У дома Протезиране и имплантиране Използвайки определението за производна, намерете производната на функцията. Геометрично значение на производната

Използвайки определението за производна, намерете производната на функцията. Геометрично значение на производната

Първо ниво

Производна на функция. The Ultimate Guide (2019)

Нека си представим прав път, минаващ през хълмиста местност. Тоест върви нагоре и надолу, но не завива надясно или наляво. Ако оста е насочена хоризонтално по протежение на пътя и вертикално, тогава линията на пътя ще бъде много подобна на графиката на някаква непрекъсната функция:

Оста е определено ниво на нулева надморска височина; в живота ние използваме морското ниво като него.

Докато се движим напред по такъв път, ние също се движим нагоре или надолу. Можем също да кажем: когато аргументът се промени (движение по абсцисната ос), стойността на функцията се променя (движение по ординатната ос). Сега нека помислим как да определим „стръмността“ на нашия път? Каква стойност може да бъде това? Много е просто: колко ще се промени височината, когато се движите напред на определено разстояние. Наистина, на различни участъци от пътя, движейки се напред (по оста x) с един километър, ние ще се издигаме или падаме с различен брой метри спрямо морското равнище (по оста y).

Нека обозначим напредък (прочетете „делта x“).

Гръцката буква (делта) обикновено се използва в математиката като префикс, означаващ "промяна". Тоест - това е промяна в количеството, - промяна; тогава какво е? Точно така, промяна в големината.

Важно: изразът е едно цяло, една променлива. Никога не отделяйте "делта" от "х" или друга буква! Това е, например,.

И така, ние се придвижихме напред, хоризонтално, с. Ако сравним линията на пътя с графиката на функцията, тогава как ще означим издигането? Разбира се,. Тоест, докато вървим напред, се издигаме по-високо.

Стойността е лесна за изчисляване: ако в началото сме били на височина и след преместване сме се озовали на височина, тогава. Ако крайната точка е по-ниска от началната, тя ще бъде отрицателна - това означава, че не се изкачваме, а слизаме.

Да се ​​върнем към "стръмнина": това е стойност, която показва колко (стръмно) се увеличава височината, когато се движите напред с една единица разстояние:

Да предположим, че на някакъв участък от пътя, когато се движите напред с километър, пътят се издига с километър. Тогава наклонът на това място е равен. И ако пътят, докато се движи напред с m, падна с km? Тогава наклонът е равен.

Сега нека погледнем върха на един хълм. Ако вземете началото на участъка на половин километър преди върха и края на половин километър след него, можете да видите, че височината е почти същата.

Тоест, според нашата логика се оказва, че наклонът тук е почти равен на нула, което явно не е вярно. Само на разстояние от километри много може да се промени. Необходимо е да се вземат предвид по-малки площи за по-адекватна и точна оценка на стръмността. Например, ако измервате промяната във височината, докато се движите с един метър, резултатът ще бъде много по-точен. Но дори тази точност може да не ни е достатъчна - в крайна сметка, ако има стълб по средата на пътя, можем просто да го подминем. Какво разстояние да изберем тогава? сантиметър? Милиметър? По-малко е по-добре!

IN Истински животИзмерването на разстояния до най-близкия милиметър е повече от достатъчно. Но математиците винаги се стремят към съвършенство. Следователно концепцията е измислена безкрайно малък, тоест абсолютната стойност е по-малка от всяко число, което можем да назовем. Например, казвате: една трилионна! Колко по-малко? И разделяте това число на - и ще бъде още по-малко. И така нататък. Ако искаме да напишем, че дадено количество е безкрайно малко, пишем така: (четем „х клони към нула“). Много е важно да се разбере че това число не е нула!Но много близо до него. Това означава, че можете да разделите по него.

Концепцията, противоположна на безкрайно малкото, е безкрайно голямо (). Вероятно вече сте го срещали, когато сте работили върху неравенства: това число е по модул по-голямо от всяко число, за което можете да се сетите. Ако излезете с възможно най-голямото число, просто го умножете по две и ще получите още по-голямо число. А безкрайността е дори по-голяма от това, което се случва. Всъщност безкрайно голямото и безкрайно малкото са обратни едно на друго, тоест at, и обратно: at.

Сега да се върнем на нашия път. Идеално изчисленият наклон е наклонът, изчислен за безкрайно малък сегмент от пътя, тоест:

Отбелязвам, че при безкрайно малко преместване промяната във височината също ще бъде безкрайно малка. Но нека ви напомня, че безкрайно малко не означава равно на нула. Ако разделите безкрайно малки числа едно на друго, можете да получите съвсем обикновено число, например . Тоест една малка стойност може да бъде точно пъти по-голяма от друга.

За какво е всичко това? Пътят, стръмнината... Ние не ходим на автомобилно рали, но учим математика. И в математиката всичко е абсолютно същото, само се нарича по различен начин.

Понятие за производна

Производната на функция е отношението на нарастването на функцията към нарастването на аргумента за безкрайно малко увеличение на аргумента.

Постепеннов математиката те наричат ​​промяна. Извиква се степента, до която аргументът () се променя, докато се движи по оста увеличение на аргументаи се обозначава Колко се е променила функцията (височината) при движение напред по оста с разстояние се нарича увеличение на функциятаи е обозначен.

И така, производната на функция е съотношението към кога. Производната обозначаваме със същата буква като функцията, само че с проста буква горе вдясно: или просто. И така, нека напишем формулата за производна, използвайки тези обозначения:

Както и в аналогията с пътя, тук при нарастване на функцията производната е положителна, а при намаляване е отрицателна.

Може ли производната да е равна на нула? Със сигурност. Например, ако се движим по равен хоризонтален път, стръмността е нула. И това е вярно, височината изобщо не се променя. Така е и с производната: производната на постоянна функция (константа) е равна на нула:

тъй като увеличението на такава функция е равно на нула за всяка.

Нека си спомним примера на върха на хълма. Оказа се, че е възможно да се подредят краищата на сегмента от противоположните страни на върха по такъв начин, че височината в краищата да се окаже еднаква, т.е. сегментът да е успореден на оста:

Но големите сегменти са знак за неточно измерване. Ще повдигнем нашия сегмент нагоре успоредно на себе си, след което дължината му ще намалее.

В крайна сметка, когато сме безкрайно близо до върха, дължината на сегмента ще стане безкрайно малка. Но в същото време тя остава успоредна на оста, тоест разликата във височината в нейните краища е равна на нула (тя не клони към, но е равна). Така че производното

Това може да се разбере по следния начин: когато стоим на самия връх, едно малко изместване наляво или надясно променя височината ни незначително.

Има и чисто алгебрично обяснение: вляво от върха функцията нараства, а вдясно намалява. Както разбрахме по-рано, когато една функция расте, производната е положителна, а когато намалява, тя е отрицателна. Но се променя плавно, без скокове (тъй като пътят никъде не променя рязко наклона си). Следователно трябва да има между отрицателни и положителни стойности. То ще бъде там, където функцията нито нараства, нито намалява - в точката на върха.

Същото важи и за дъното (областта, където функцията отляво намалява, а отдясно се увеличава):

Още малко за увеличенията.

Така че променяме аргумента на величина. Променяме от каква стойност? В какво се превърна (аргументът) сега? Можем да изберем всяка точка и сега ще танцуваме от нея.

Помислете за точка с координата. Стойността на функцията в него е равна. След това правим същото увеличение: увеличаваме координатата с. Сега какво? равен аргумент? Много лесно: . Каква е стойността на функцията сега? Където отива аргументът, отива и функцията: . Какво ще кажете за увеличаване на функцията? Нищо ново: това все още е сумата, с която функцията се е променила:

Практикувайте намирането на увеличения:

  1. Намерете увеличението на функцията в точка, когато увеличението на аргумента е равно на.
  2. Същото важи и за функцията в точка.

Решения:

В различни точки с едно и също увеличение на аргумента увеличението на функцията ще бъде различно. Това означава, че производната във всяка точка е различна (обсъдихме това в самото начало - стръмността на пътя е различна в различните точки). Следователно, когато пишем производна, трябва да посочим в кой момент:

Силова функция.

Степенна функция е функция, при която аргументът е до известна степен (логичен, нали?).

Нещо повече - във всякаква степен: .

Най-простият случай е, когато показателят е:

Нека намерим производната му в точка. Нека си припомним дефиницията на производна:

Така аргументът се променя от на. Колко е нарастването на функцията?

Увеличението е това. Но функция във всяка точка е равна на своя аргумент. Ето защо:

Производната е равна на:

Производната на е равна на:

б) Сега помислете квадратична функция (): .

Сега нека си припомним това. Това означава, че стойността на увеличението може да бъде пренебрегната, тъй като е безкрайно малка и следователно незначителна на фона на другия член:

И така, измислихме друго правило:

в) Продължаваме логическия ред: .

Този израз може да бъде опростен по различни начини: отворете първата скоба, като използвате формулата за съкратено умножение на куба на сбора, или разложете на множители целия израз, като използвате формулата за разликата на кубовете. Опитайте се да го направите сами, като използвате някой от предложените методи.

И така, получих следното:

И отново нека си припомним това. Това означава, че можем да пренебрегнем всички термини, съдържащи:

Получаваме: .

г) Подобни правила могат да бъдат получени за големи мощности:

д) Оказва се, че това правило може да се обобщи за степенна функция с произволен показател, дори не цяло число:

(2)

Правилото може да се формулира с думите: „степента се изнася напред като коефициент и след това се намалява с .“

Ще докажем това правило по-късно (почти в самия край). Сега нека да разгледаме няколко примера. Намерете производната на функциите:

  1. (по два начина: чрез формула и чрез определението за производна - чрез изчисляване на приращението на функцията);
  1. . Вярвате или не, това е мощностна функция. Ако имате въпроси като „Как е това? Къде е дипломата?“, помнете темата „“!
    Да, да, коренът също е степен, само дробна: .
    Това означава, че нашият квадратен корен е просто степен с показател:
    .
    Търсим производната, използвайки наскоро научената формула:

    Ако в този момент пак стане неясно повторете темата “”!!! (относно степен с отрицателен показател)

  2. . Сега степента:

    А сега през дефиницията (забравили ли сте още?):
    ;
    .
    Сега, както обикновено, пренебрегваме термина, съдържащ:
    .

  3. . Комбинация от предишни случаи: .

Тригонометрични функции.

Тук ще използваме един факт от висшата математика:

С израз.

Ще научите доказателството през първата си година в института (и за да стигнете до там, трябва да издържите добре Единния държавен изпит). Сега просто ще го покажа графично:

Виждаме, че когато функцията не съществува - точката от графиката се изрязва. Но колкото по-близо до стойността, толкова по-близо е функцията до това.

Освен това можете да проверите това правило с помощта на калкулатор. Да, да, не се срамувайте, вземете калкулатор, все още не сме на Единния държавен изпит.

И така, нека опитаме: ;

Не забравяйте да превключите калкулатора си в режим на радиани!

и т.н. Виждаме, че колкото по-малко, толкова по-близка стойностотношение към

а) Разгледайте функцията. Както обикновено, нека намерим увеличението му:

Нека превърнем разликата на синусите в произведение. За целта използваме формулата (запомнете темата „”): .

Сега производното:

Да направим замяна: . Тогава за безкрайно малко също е безкрайно малко: . Изразът за приема формата:

И сега си спомняме това с израза. И също така, какво ще стане, ако едно безкрайно малко количество може да бъде пренебрегнато в сумата (тоест at).

И така, получаваме следното правило: производната на синуса е равна на косинуса:

Това са основни („таблични“) производни. Ето ги в един списък:

По-късно ще добавим още няколко към тях, но тези са най-важните, тъй като се използват най-често.

практика:

  1. Намерете производната на функцията в точка;
  2. Намерете производната на функцията.

Решения:

  1. Първо, нека намерим производната в общ изгледи след това заменете стойността му:
    ;
    .
  2. Тук имаме нещо подобно на степенна функция. Нека се опитаме да я доведем
    нормален изглед:
    .
    Страхотно, сега можете да използвате формулата:
    .
    .
  3. . Еееееее….. Какво е това????

Добре, прав си, все още не знаем как да намерим такива производни. Тук имаме комбинация от няколко вида функции. За да работите с тях, трябва да научите още няколко правила:

Експонента и натурален логаритъм.

В математиката има функция, чиято производна за всяка стойност е равна на стойността на самата функция в същото време. Нарича се „експонента“ и е експоненциална функция

Основата на тази функция е константа - тя е безкрайна десетичен знак, тоест ирационално число (като). Нарича се „число на Ойлер“, поради което се обозначава с буква.

И така, правилото:

Много лесен за запомняне.

Е, нека не отиваме далеч, нека веднага разгледаме обратната функция. Коя функция е обратна на експоненциалната функция? Логаритъм:

В нашия случай основата е числото:

Такъв логаритъм (т.е. логаритъм с основа) се нарича „естествен“ и ние използваме специална нотация за него: пишем вместо това.

На какво е равно? Разбира се, .

Производната на естествения логаритъм също е много проста:

Примери:

  1. Намерете производната на функцията.
  2. Каква е производната на функцията?

Отговори: Изложител и натурален логаритъм- функциите са уникално прости по отношение на производни. Експоненциалните и логаритмичните функции с всяка друга основа ще имат различна производна, която ще анализираме по-късно, след като преминем през правилата за диференциране.

Правила за диференциране

Правила на какво? Пак нов мандат, пак?!...

Диференциацияе процесът на намиране на производната.

Това е всичко. Как иначе можете да наречете този процес с една дума? Не производна... Математиците наричат ​​диференциала същото нарастване на функция при. Този термин идва от латинския differentia - разлика. Тук.

Когато извличаме всички тези правила, ще използваме две функции, например и. Ще ни трябват и формули за техните увеличения:

Има общо 5 правила.

Константата се изважда от знака за производна.

Ако - някакво постоянно число (константа), тогава.

Очевидно това правило работи и за разликата: .

Нека го докажем. Нека бъде или по-просто.

Примери.

Намерете производните на функциите:

  1. в точка;
  2. в точка;
  3. в точка;
  4. в точката.

Решения:

  1. (производната е една и съща във всички точки, тъй като е линейна функция, помните ли?);

Производно на продукта

Тук всичко е подобно: нека въведем нова функция и да намерим нейното увеличение:

Производна:

Примери:

  1. Намерете производните на функциите и;
  2. Намерете производната на функцията в точка.

Решения:

Производна на експоненциална функция

Сега знанията ви са достатъчни, за да научите как да намирате производната на всяка експоненциална функция, а не само на експоненти (забравили ли сте вече какво е това?).

И така, къде е някакво число.

Вече знаем производната на функцията, така че нека се опитаме да намалим нашата функция до нова основа:

За това ще използваме просто правило: . Тогава:

Е, проработи. Сега опитайте да намерите производната и не забравяйте, че тази функция е сложна.

Се случи?

Ето, проверете сами:

Формулата се оказа много подобна на производната на експонента: както беше, остава същата, само се появи фактор, който е просто число, но не и променлива.

Примери:
Намерете производните на функциите:

Отговори:

Това е просто число, което не може да се изчисли без калкулатор, тоест не може да се запише повече в проста форма. Затова го оставяме в този вид в отговора.

Производна на логаритмична функция

Тук е подобно: вече знаете производната на естествения логаритъм:

Следователно, за да намерите произволен логаритъм с различна основа, например:

Трябва да намалим този логаритъм до основата. Как се променя основата на логаритъм? Надявам се, че помните тази формула:

Само сега вместо това ще напишем:

Знаменателят е просто константа (постоянно число, без променлива). Производната се получава много просто:

Производни на експоненциални и логаритмични функции почти никога не се срещат в Единния държавен изпит, но няма да е излишно да ги знаете.

Производна на сложна функция.

Какво е "сложна функция"? Не, това не е логаритъм и не е арктангенс. Тези функции могат да бъдат трудни за разбиране (въпреки че ако намирате логаритъма за труден, прочетете темата „Логаритми“ и ще се оправите), но от математическа гледна точка думата „комплексен“ не означава „труден“.

Представете си малка конвейерна лента: двама души седят и извършват някакви действия с някакви предмети. Например, първият увива шоколадово блокче в обвивка, а вторият го завързва с панделка. Резултатът е съставен обект: шоколадово блокче, увито и завързано с панделка. За да изядете блокче шоколад, трябва да направите обратните стъпки обратен ред.

Нека създадем подобен математически конвейер: първо ще намерим косинуса на число и след това ще повдигнем на квадрат полученото число. И така, получаваме число (шоколад), аз намирам неговия косинус (обвивка) и след това вие повдигате на квадрат полученото (завързвате го с панделка). Какво стана? функция. Това е пример сложна функция: когато, за да намерим нейната стойност, извършваме първото действие директно с променливата и след това второ действие с това, което е резултат от първото.

Можем лесно да направим същите стъпки в обратен ред: първо го повдигате на квадрат, а след това търся косинуса на полученото число: . Лесно е да се досетите, че резултатът почти винаги ще бъде различен. Важна характеристикасложни функции: когато редът на действията се промени, функцията се променя.

С други думи, сложна функция е функция, чийто аргумент е друга функция: .

За първия пример,.

Втори пример: (същото нещо). .

Действието, което извършваме последно, ще бъде извикано "външна" функция, а първо извършеното действие - съотв "вътрешна" функция(това са неофициални имена, използвам ги само за да обясня материала на прост език).

Опитайте се да определите сами коя функция е външна и коя вътрешна:

Отговори:Разделянето на вътрешни и външни функции е много подобно на промяната на променливи: например във функция

  1. Какво действие ще извършим първо? Първо, нека изчислим синуса и едва след това го кубираме. Това означава, че това е вътрешна функция, но външна.
    И първоначалната функция е тяхната композиция: .
  2. Вътрешен: ; външен: .
    Преглед: .
  3. Вътрешен: ; външен: .
    Преглед: .
  4. Вътрешен: ; външен: .
    Преглед: .
  5. Вътрешен: ; външен: .
    Преглед: .

Променяме променливите и получаваме функция.

Е, сега ще извлечем нашето шоколадово блокче и ще потърсим производната. Процедурата винаги е обратна: първо търсим производната на външната функция, след това умножаваме резултата по производната на вътрешната функция. По отношение на оригиналния пример изглежда така:

Друг пример:

И така, нека най-накрая формулираме официалното правило:

Алгоритъм за намиране на производната на сложна функция:

Изглежда просто, нали?

Нека проверим с примери:

Решения:

1) Вътрешен: ;

Външен: ;

2) Вътрешен: ;

(Само не се опитвайте да го отрежете досега! Нищо не излиза изпод косинуса, помните ли?)

3) Вътрешен: ;

Външен: ;

Веднага става ясно, че това е сложна функция на три нива: в крайна сметка това вече е сложна функция сама по себе си и ние също извличаме корена от нея, тоест извършваме третото действие (поставяме шоколада в обвивка и с панделка в куфарчето). Но няма причина да се страхувате: ние все пак ще „разопаковаме“ тази функция в същия ред, както обикновено: от края.

Тоест, първо диференцираме корена, след това косинуса и едва след това израза в скоби. И след това умножаваме всичко.

В такива случаи е удобно да номерирате действията. Тоест нека си представим това, което знаем. В какъв ред ще извършим действия за изчисляване на стойността на този израз? Да разгледаме един пример:

Колкото по-късно се извърши действието, толкова по-„външна“ ще бъде съответната функция. Последователността на действията е същата като преди:

Тук гнезденето обикновено е 4-степенно. Да определим хода на действие.

1. Радикален израз. .

2. Корен. .

3. Синус. .

4. Квадрат. .

5. Събираме всичко заедно:

ПРОИЗВОДНО. НАКРАТКО ЗА ГЛАВНОТО

Производна на функция- отношението на нарастването на функцията към увеличението на аргумента за безкрайно малко увеличение на аргумента:

Основни производни:

Правила за диференциране:

Константата се изважда от знака за производна:

Производна на сумата:

Производно на продукта:

Производна на коефициента:

Производна на сложна функция:

Алгоритъм за намиране на производната на сложна функция:

  1. Дефинираме „вътрешната“ функция и намираме нейната производна.
  2. Дефинираме „външната“ функция и намираме нейната производна.
  3. Умножаваме резултатите от първа и втора точка.

Съдържанието на статията

ПРОИЗВОДНО– производна на функцията г = f(х), дадени на определен интервал ( а, b) в точка хот този интервал се нарича границата, към която клони съотношението на нарастването на функцията fв този момент към съответното увеличение на аргумента, когато увеличението на аргумента клони към нула.

Производната обикновено се обозначава по следния начин:

Други обозначения също са широко използвани:

Незабавна скорост.

Нека точката Мсе движи по права линия. Разстояние сподвижна точка, считано от някаква начална позиция М 0 , зависи от времето T, т.е. сима функция на времето T: с= f(T). Нека в някакъв момент от времето Tподвижна точка Мбеше на разстояние сот изходна позиция М 0 и в някой следващ момент T+D Tсе оказа в положение М 1 - на разстояние с+D сот начална позиция ( виж снимка.).

Така за определен период от време Д Tразстояние ссе променя със сумата D с. В този случай те казват, че през интервала от време D Tвеличина сполучено увеличение D с.

Средната скорост не може във всички случаи точно да характеризира скоростта на движение на дадена точка Мв даден момент T. Ако, например, тялото в началото на интервала D Tсе движи много бързо и накрая много бавно, тогава средната скорост няма да може да отрази посочените особености на движението на точката и да даде представа за истинската скорост на нейното движение в момента T. За да изразите по-точно истинската скорост, като използвате средната скорост, трябва да вземете по-кратък период от време D T. Най-пълно характеризира скоростта на движение на дадена точка в момента Tграницата, към която клони средната скорост при D T® 0. Тази граница се нарича скорост на движение в този момент:

По този начин скоростта на движение в даден момент се нарича граница на коефициента на нарастване на пътя D скъм нарастване на времето D T, когато нарастването на времето клони към нула. защото

Геометричен смисъл на производната. Тангента към графиката на функция.

Конструирането на допирателни линии е един от онези проблеми, довели до раждането на диференциалното смятане. Първата публикувана работа, свързана с диференциалното смятане, написана от Лайбниц, беше озаглавена Нов методмаксимуми и минимуми, както и тангенти, за които не служат нито дробни, нито ирационални величини и специален вид смятане за това.

Нека кривата е графиката на функцията г =f(х) в правоъгълна координатна система ( см. ориз.).

На някаква стойност хфункцията има значение г =f(х). Тези ценности хИ гточката на кривата съответства М 0(х, г). Ако аргументът хдайте увеличение D х, след това новата стойност на аргумента х+D хсъответства на новата стойност на функцията y+д г = f(х + д х). Съответстващата точка на кривата ще бъде точката М 1(х+D х,г+D г). Ако начертаете секуща М 0М 1 и означен с j ъгълът, образуван от напречна с положителната посока на оста Вол, от фигурата веднага става ясно, че .

Ако сега Д хклони към нула, тогава точката М 1 се движи по кривата, приближавайки се до точката М 0 и ъгъл й промени с D х. При Dx® 0 ъгълът j клони към определена граница a и правата, минаваща през точката М 0 и компонентът с положителна посока на оста x, ъгъл a, ще бъде желаната тангенс. Наклонът му е:

следователно f´( х) = tga

тези. производна стойност f´( х) за дадена стойност на аргумент хе равен на тангенса на ъгъла, образуван от допирателната към графиката на функцията f(х) в съответната точка М 0(х,г) с положителна посока на оста Вол.

Диференцируемост на функциите.

Определение. Ако функцията г = f(х) има производна в точката х = х 0, тогава функцията е диференцируема в тази точка.

Непрекъснатост на функция с производна. Теорема.

Ако функцията г = f(х) е диференцируем в даден момент х = х 0, тогава той е непрекъснат в тази точка.

Следователно функцията не може да има производна в точките на прекъсване. Неправилен е обратният извод, т.е. от факта, че в един момент х = х 0 функция г = f(х) е непрекъснат, не означава, че е диференцируем в тази точка. Например функцията г = |х| непрекъснато за всички х(–Ґ x x = 0 няма производна. В тази точка няма допирателна към графиката. Има дясна допирателна и лява, но те не съвпадат.

Някои теореми за диференцируеми функции. Теорема за корените на производната (теорема на Рол).Ако функцията f(х) е непрекъснат на сегмента [а,b], е диференцируем във всички вътрешни точки на този сегмент и в краищата х = аИ х = bотива на нула ( f(а) = f(b) = 0), след това вътре в сегмента [ а,b] има поне една точка х= с, а c b, в която производната fў( х) отива на нула, т.е. fў( ° С) = 0.

Теорема за крайно нарастване (теорема на Лагранж).Ако функцията f(х) е непрекъснат на интервала [ а, b] и е диференцируем във всички вътрешни точки на този сегмент, след това вътре в сегмента [ а, b] има поне една точка с, а c b това

f(b) – f(а) = fў( ° С)(bа).

Теорема за съотношението на нарастванията на две функции (теорема на Коши).Ако f(х) И ж(х) – две непрекъснати на отсечката функции [а, b] и диференцируеми във всички вътрешни точки на този сегмент, и жў( х) не изчезва никъде в този сегмент, след това в сегмента [ а, b] има такава точка х = с, а c b това

Производни от различни поръчки.

Нека функцията г =f(х) е диференцируем на някакъв интервал [ а, b]. Производни стойности f ў( х), най-общо казано, зависят от х, т.е. производна f ў( х) също е функция на х. При диференцирането на тази функция получаваме така наречената втора производна на функцията f(х), което е означено f ўў ( х).

Производна н-ти ред на функция f(х) се нарича производна (от първи ред) на производната н- 1- th и се обозначава със символа г(н) = (г(н– 1))ў.

Диференциали от различни поръчки.

Функционален диференциал г = f(х), Където х– независима променлива, да dy = f ў( х)dx, някаква функция от х, но от хсамо първият фактор може да зависи f ў( х), вторият фактор ( dx) е нарастването на независимата променлива хи не зависи от стойността на тази променлива. защото dyима функция от х, тогава можем да определим диференциала на тази функция. Диференциалът на диференциала на функция се нарича втори диференциал или диференциал от втори ред на тази функция и се обозначава д 2г:

д(dx) = д 2г = f ўў( х)(dx) 2 .

Диференциал н-от първи ред се нарича първи диференциал на диференциала н- 1- ти ред:

d n y = д(дн–1г) = f(н)(х)dx(н).

Частична производна.

Ако една функция зависи не от един, а от няколко аргумента x i(iварира от 1 до н,i= 1, 2,… н),f(х 1,х 2,… x n), тогава в диференциалното смятане се въвежда концепцията за частична производна, която характеризира скоростта на промяна на функция на няколко променливи, когато се променя само един аргумент, например, x i. Частична производна от 1-ви ред по отношение на x iсе определя като обикновена производна и се приема, че всички аргументи освен x i, поддържат постоянни стойности. За частни производни се въвежда обозначението

Дефинираните по този начин частни производни от първи ред (като функции на едни и същи аргументи) могат от своя страна също да имат частни производни, това са частни производни от втори ред и т.н. Такива производни, взети от различни аргументи, се наричат ​​смесени. Непрекъснатите смесени производни от един и същи ред не зависят от реда на диференциране и са равни помежду си.

Анна Чугайнова

Определение.Нека функцията \(y = f(x)\) е дефинирана в определен интервал, съдържащ точката \(x_0\). Нека дадем на аргумента увеличение \(\Delta x \), така че да не напуска този интервал. Нека намерим съответното нарастване на функцията \(\Delta y \) (при преместване от точка \(x_0 \) до точка \(x_0 + \Delta x \)) и съставим отношението \(\frac(\Delta y)(\Делта x) \). Ако има ограничение за това съотношение при \(\Delta x \rightarrow 0\), тогава определеното ограничение се извиква производна на функция\(y=f(x) \) в точката \(x_0 \) и означете \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Символът y често се използва за обозначаване на производната. Имайте предвид, че y" = f(x) е нова функция, но естествено свързана с функцията y = f(x), дефинирана във всички точки x, в които съществува горната граница. Тази функция се нарича така: производна на функцията y = f(x).

Геометрично значениепроизводнае както следва. Ако е възможно да се начертае допирателна към графиката на функцията y = f(x) в точката с абсцисата x=a, която не е успоредна на оста y, тогава f(a) изразява наклона на допирателната :
\(k = f"(a)\)

Тъй като \(k = tg(a) \), тогава равенството \(f"(a) = tan(a) \) е вярно.

Сега нека тълкуваме дефиницията на производната от гледна точка на приблизителните равенства. Нека функцията \(y = f(x)\) има производна в определена точка \(x\):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Това означава, че близо до точката x приблизителното равенство \(\frac(\Delta y)(\Delta x) \approx f"(x)\), т.е. \(\Delta y \approx f"(x) \cdot\ Делта x\). Значението на полученото приблизително равенство е следното: увеличението на функцията е „почти пропорционално“ на увеличението на аргумента, а коефициентът на пропорционалност е стойността на производната в дадена точкаХ. Например за функцията \(y = x^2\) е валидно приблизителното равенство \(\Delta y \approx 2x \cdot \Delta x \). Ако анализираме внимателно дефиницията на производна, ще открием, че тя съдържа алгоритъм за намирането й.

Нека го формулираме.

Как да намеря производната на функцията y = f(x)?

1. Фиксирайте стойността на \(x\), намерете \(f(x)\)
2. Дайте на аргумента \(x\) увеличение \(\Delta x\), отидете до нова точка \(x+ \Delta x \), намерете \(f(x+ \Delta x) \)
3. Намерете увеличението на функцията: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Създайте релацията \(\frac(\Delta y)(\Delta x) \)
5. Изчислете $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Тази граница е производната на функцията в точка x.

Ако функция y = f(x) има производна в точка x, тогава тя се нарича диференцируема в точка x. Извиква се процедурата за намиране на производната на функцията y = f(x). диференциацияфункции y = f(x).

Нека обсъдим следния въпрос: как са свързани помежду си непрекъснатостта и диференцируемостта на функция в дадена точка?

Нека функцията y = f(x) е диференцируема в точката x. Тогава може да се начертае допирателна към графиката на функцията в точка M(x; f(x)) и, припомнете си, ъгловият коефициент на допирателната е равен на f "(x). Такава графика не може да се „счупи“ в точка M, т.е. функцията трябва да е непрекъсната в точка x.

Това бяха „практически“ аргументи. Нека дадем по-строги аргументи. Ако функцията y = f(x) е диференцируема в точката x, тогава е валидно приблизителното равенство \(\Delta y \approx f"(x) \cdot \Delta x\). Ако в това равенство \(\Delta x \) клони към нула, тогава \(\Delta y \) ще клони към нула и това е условието за непрекъснатост на функцията в точка.

Така, ако една функция е диференцируема в точка x, тогава тя е непрекъсната в тази точка.

Обратното твърдение не е вярно. Например: функция y = |x| е непрекъсната навсякъде, по-специално в точката x = 0, но допирателната към графиката на функцията в „точката на свързване“ (0; 0) не съществува. Ако в даден момент допирателната не може да бъде начертана към графиката на функция, тогава производната не съществува в тази точка.

Още един пример. Функцията \(y=\sqrt(x)\) е непрекъсната на цялата числова ос, включително в точката x = 0. А допирателната към графиката на функцията съществува във всяка точка, включително в точката x = 0 . Но в тази точка допирателната съвпада с оста y, т.е. тя е перпендикулярна на абсцисната ос, нейното уравнение има формата x = 0. Такава права линия няма ъглов коефициент, което означава, че \(f „(0)\) не съществува.

И така, ние се запознахме с ново свойство на функция - диференцируемост. Как може да се заключи от графиката на функция, че тя е диференцируема?

Отговорът всъщност е даден по-горе. Ако в дадена точка е възможно да се начертае допирателна към графиката на функция, която не е перпендикулярна на абсцисната ос, тогава в тази точка функцията е диференцируема. Ако в дадена точка допирателната към графиката на функция не съществува или е перпендикулярна на абсцисната ос, тогава в тази точка функцията не е диференцируема.

Правила за диференциране

Операцията за намиране на производната се нарича диференциация. Когато извършвате тази операция, често трябва да работите с частни, суми, произведения на функции, както и „функции на функции“, тоест сложни функции. Въз основа на определението за производна можем да изведем правила за диференциране, които улесняват тази работа. Ако C е постоянно число и f=f(x), g=g(x) са някои диференцируеми функции, тогава са верни следните правила за диференциране:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Производна на сложна функция:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблица с производни на някои функции

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

(\large\bf Производна на функция)

Помислете за функцията y=f(x), посочен на интервала (а, б). Позволявам х- всяка фиксирана точка от интервала (а, б), А Δx- произволно число, така че стойността x+Δxсъщо принадлежи към интервала (а, б). Този номер Δxнаречено увеличение на аргумента.

Определение. Увеличаване на функцията y=f(x)в точката х, съответстващ на увеличението на аргумента Δx, да се обадим на номера

Δy = f(x+Δx) - f(x).

Ние вярваме в това Δx ≠ 0. Разгледайте в дадена фиксирана точка хсъотношението на нарастването на функцията в тази точка към съответното увеличение на аргумента Δx

Ще наричаме това отношение отношение на разликата. Тъй като стойността хсчитаме за фиксирано, съотношението на разликата е функция на аргумента Δx. Тази функция е дефинирана за всички стойности на аргументи Δx, принадлежащи на някаква достатъчно малка околност на точката Δx=0, с изключение на самата точка Δx=0. Следователно имаме право да разгледаме въпроса за съществуването на лимит определена функцияпри Δx → 0.

Определение. Производна на функция y=f(x)в дадена фиксирана точка хнаречен лимит при Δx → 0съотношение на разликата, т.е

При условие, че тази граница съществува.

Обозначаване. y′(x)или f′(x).

Геометрично значение на производната: Производна на функция f(x)в този момент хравен на тангенса на ъгъла между оста Воли допирателна към графиката на тази функция в съответната точка:

f′(x 0) = \tgα.

Механично значение на производната: Производната на пътя спрямо времето е равна на скоростта праволинейно движениеточки:

Уравнение на допирателна към права y=f(x)в точката M 0 (x 0, y 0)приема формата

y-y 0 = f′(x 0) (x-x 0).

Нормалната към крива в дадена точка е перпендикулярът на допирателната в същата точка. Ако f′(x 0)≠ 0, тогава уравнението на нормалата към правата y=f(x)в точката M 0 (x 0, y 0)е написано така:

Концепцията за диференцируемост на функция

Нека функцията y=f(x)определени през определен интервал (а, б), х- някаква фиксирана стойност на аргумент от този интервал, Δx- всяко увеличение на аргумента, така че стойността на аргумента x+Δx ∈ (a, b).

Определение. функция y=f(x)наречена диференцируема в дадена точка х, ако нарастване Δyтази функция в точката х, съответстващ на увеличението на аргумента Δx, могат да бъдат представени във формата

Δy = A Δx +αΔx,

Където А- някакво число, независимо от Δx, А α - функция аргумент Δx, което е безкрайно малко при Δx→ 0.

Тъй като произведението на две безкрайно малки функции αΔxе безкрайно малко повече висок ред, как Δx(свойство на 3 безкрайно малки функции), тогава можем да напишем:

Δy = A Δx +o(Δx).

Теорема. За да може функцията y=f(x)беше диференцируем в дадена точка х, е необходимо и достатъчно той да има крайна производна в тази точка. При което A=f′(x), това е

Δy = f′(x) Δx +o(Δx).

Операцията за намиране на производната обикновено се нарича диференциране.

Теорема. Ако функцията y=f(x) х, тогава той е непрекъснат в тази точка.

Коментирайте. От непрекъснатостта на функцията y=f(x)в този момент х, най-общо казано, диференцируемостта на функцията не следва f(x)в този момент. Например функцията y=|x|- непрекъснато в точка х=0, но няма производна.

Понятие за диференциална функция

Определение. Функционален диференциал y=f(x)произведението на производната на тази функция и нарастването на независимата променлива се нарича х:

dy = y′ Δx, df(x) = f′(x) Δx.

За функция y=xполучаваме dy=dx=x′Δx = 1· Δx= Δx, това е dx=Δx- диференциалът на независима променлива е равен на нарастването на тази променлива.

Така можем да пишем

dy = y′ dx, df(x) = f′(x) dx

Диференциал dyи нарастване Δyфункции y=f(x)в този момент х, като и двете съответстват на едно и също увеличение на аргумента Δx, най-общо казано, не са равни помежду си.

Геометрично значение на диференциала: Диференциалът на функция е равен на нарастването на ординатата на допирателната към графиката на тази функция, когато аргументът се увеличава Δx.

Правила за диференциране

Теорема. Ако всяка от функциите u(x)И v(x)диференцируеми в дадена точка х, след това сумата, разликата, произведението и частното на тези функции (частното при условие, че v(x)≠ 0) също са диференцируеми в тази точка и формулите важат:

Разгледайте сложната функция y=f(φ(x))≡ F(x), Където y=f(u), u=φ(x). В такъв случай uНаречен междинен аргумент, х - независима променлива.

Теорема. Ако y=f(u)И u=φ(x)са диференцируеми функции на техните аргументи, тогава производната на сложна функция y=f(φ(x))съществува и е равно на произведението на тази функция по отношение на междинния аргумент и производната на междинния аргумент по отношение на независимата променлива, т.е.

Коментирайте. За сложна функция, която е суперпозиция на три функции y=F(f(φ(x))), правилото за диференциране има формата

y′ x = y′ u u′ v v′ x,

къде са функциите v=φ(x), u=f(v)И y=F(u)- диференцируеми функции на техните аргументи.

Теорема. Нека функцията y=f(x)нараства (или намалява) и е непрекъснат в някаква околност на точката х 0. Нека освен това тази функция е диференцируема в посочената точка х 0и неговата производна в този момент f′(x 0) ≠ 0. Тогава в някаква околност на съответната точка y 0 =f(x 0)обратното е дефинирано за y=f(x)функция x=f -1 (y), а посочената обратна функция е диференцируема в съответната точка y 0 =f(x 0)и за неговата производна в този момент гформулата е валидна

Таблица с производни

Инвариантност на формата на първия диференциал

Нека разгледаме диференциала на сложна функция. Ако y=f(x), x=φ(t)- функциите на техните аргументи са диференцируеми, тогава производната на функцията y=f(φ(t))изразено с формулата

y′ t = y′ x x′ t.

А-приори dy=y′ t dt, тогава получаваме

dy = y′ t dt = y′ x · x′ t dt = y′ x (x′ t dt) = y′ x dx,

dy = y′ x dx.

И така, ние сме доказали

Свойство за инвариантност на формата на първия диференциал на функция: както в случая, когато аргументът хе независима променлива и в случай, че аргументът хсама по себе си е диференцируема функция на новата променлива, диференциала dyфункции y=f(x)е равно на производната на тази функция, умножена по диференциала на аргумента dx.

Приложение на диференциала в приближените изчисления

Показахме, че диференциалът dyфункции y=f(x), най-общо казано, не е равно на нарастването Δyтази функция. Но с точност до безкрайност малка функцияпо-висок порядък на дребност от Δx, приблизителното равенство е валидно

Δy ≈ dy.

Съотношението се нарича относителна грешка на равенството на това равенство. защото Δy-dy=o(Δx), тогава относителната грешка на това равенство става толкова малка, колкото желаете, с намаляване |Δх|.

Като се има предвид това Δy=f(x+δ x)-f(x), dy=f′(x)Δx, получаваме f(x+δ x)-f(x) ≈ f′(x)Δxили

f(x+δ x) ≈ f(x) + f′(x)Δx.

Това приблизително равенство позволява с грешка o(Δx)функция за замяна f(x)в малък квартал на точката х(т.е. за малки стойности Δx) линейна функцияаргумент Δx, стоящ от дясната страна.

Производни от по-висок порядък

Определение. Втора производна (или производна от втори ред) на функция y=f(x)се нарича производна на нейната първа производна.

Нотация за втората производна на функция y=f(x):

Механично значение на втората производна. Ако функцията y=f(x)описва закона за движение на материална точка по права линия, след това втората производна f″(x)равно на ускорението на движеща се точка в момента х.

Третата и четвъртата производни се определят по подобен начин.

Определение. нта производна (или производна н-ти ред) функции y=f(x)се нарича нейна производна n-1та производна:

y (n) =(y (n-1))′, f (n) (x)=(f (n-1) (x))′.

Обозначения: y″′, y IV, y Vи т.н.

Операцията за намиране на производната се нарича диференциране.

В резултат на решаването на задачи за намиране на производни на най-простите (и не много прости) функции чрез дефиниране на производната като граница на съотношението на увеличението към увеличението на аргумента, се появи таблица с производни и точно определени правила за диференциране . Първите, които работят в областта на намирането на производни, са Исак Нютон (1643-1727) и Готфрид Вилхелм Лайбниц (1646-1716).

Следователно, в наше време, за да намерите производната на която и да е функция, не е необходимо да изчислявате горепосочената граница на съотношението на увеличението на функцията към увеличението на аргумента, а трябва само да използвате таблицата на производни и правилата за диференциране. Следният алгоритъм е подходящ за намиране на производната.

За намиране на производната, имате нужда от израз под главния знак разделят прости функции на компонентии определя какви действия (продукт, сбор, частно)тези функции са свързани. Допълнителни производни елементарни функциинамираме в таблицата с производните, а формулите за производните на произведението, сумата и частното са в правилата за диференциране. След първите два примера са дадени таблица с производни и правила за диференциране.

Пример 1.Намерете производната на функция

Решение. От правилата за диференциране откриваме, че производната на сума от функции е сумата от производните на функциите, т.е.

От таблицата на производните откриваме, че производната на "x" е равна на единица, а производната на синус е равна на косинус. Ние заместваме тези стойности в сумата от производните и намираме производната, изисквана от условието на проблема:

Пример 2.Намерете производната на функция

Решение. Диференцираме като производна на сума, в която вторият член има постоянен фактор, той може да бъде изваден от знака за производна:

Ако все пак възникнат въпроси за това откъде идва нещо, те обикновено се изясняват след запознаване с таблицата на производните и най-простите правила за диференциране. В момента преминаваме към тях.

Таблица с производни на прости функции

1. Производна на константа (число). Всяко число (1, 2, 5, 200...), което е в израза на функцията. Винаги равно на нула. Това е много важно да запомните, тъй като се изисква много често
2. Производна на независимата променлива. Най-често "Х". Винаги равно на едно. Това също е важно да запомните за дълго време
3. Производна на степен. Когато решавате задачи, трябва да преобразувате неквадратни корени в степени.
4. Производна на променлива на степен -1
5. Производна корен квадратен
6. Производна на синус
7. Производна на косинус
8. Производна на тангенс
9. Производна на котангенс
10. Производна на арксинус
11. Производна на аркосинус
12. Производна на арктангенс
13. Производна на аркотангенс
14. Производна на натурален логаритъм
15. Производна на логаритмична функция
16. Производна на показателя
17. Производна на експоненциална функция

Правила за диференциране

1. Производна на сбор или разлика
2. Производна на продукта
2а. Производна на израз, умножен по постоянен множител
3. Производна на частното
4. Производна на сложна функция

Правило 1.Ако функциите

са диференцируеми в дадена точка, тогава функциите са диференцируеми в една и съща точка

и

тези. производната на алгебрична сума от функции е равна на алгебричната сума на производните на тези функции.

Последица. Ако две диференцируеми функции се различават с постоянен член, тогава техните производни са равни, т.е.

Правило 2.Ако функциите

са диференцируеми в дадена точка, тогава техният продукт е диференцируем в същата точка

и

тези. Производната на произведението на две функции е равна на сумата от произведенията на всяка от тези функции и производната на другата.

Следствие 1. Постоянният фактор може да бъде изваден от знака на производната:

Следствие 2. Производната на произведението на няколко диференцируеми функции е равна на сумата от произведенията на производната на всеки фактор и всички останали.

Например за три множителя:

Правило 3.Ако функциите

диференцируеми в даден момент И , тогава в тази точка тяхното частно също е диференцируемоu/v и

тези. производната на частното на две функции е равна на дроб, чийто числител е разликата между произведенията на знаменателя и производната на числителя и числителя и производната на знаменателя, а знаменателят е квадратът на бившият числител.

Къде да търсите неща на други страници

Когато се намира производната на произведение и частно в реални задачи, винаги е необходимо да се прилагат няколко правила за диференциране наведнъж, така че в статията има повече примери за тези производни"Производна на произведение и частно на функции".

Коментирайте.Не трябва да бъркате константа (т.е. число) като член в сума и като постоянен фактор! При член производната му е равна на нула, а при постоянен множител се изважда от знака на производните. Това типична грешка, което се случва в началния етап на изучаване на производни, но тъй като средният ученик решава няколко примера от една и две части, той вече не допуска тази грешка.

И ако, когато диференцирате продукт или коефициент, имате термин u"v, в който u- число, например 2 или 5, тоест константа, тогава производната на това число ще бъде равна на нула и следователно целият термин ще бъде равен на нула (този случай е разгледан в пример 10).

други често срещана грешка- механично решение на производната на сложна функция като производна на проста функция. Ето защо производна на сложна функцияе посветена отделна статия. Но първо ще се научим да намираме производни прости функции.

По пътя не можете да правите без трансформиране на изрази. За да направите това, може да се наложи да отворите ръководството в нови прозорци. Действия със сили и корениИ Действия с дроби .

Ако търсите решения за производни на дроби със степени и корени, т.е. когато функцията изглежда като , след това следвайте урока „Производна на суми от дроби със степени и корени.“

Ако имате задача като , тогава ще вземете урока „Производни на прости тригонометрични функции“.

Примери стъпка по стъпка - как да намерим производната

Пример 3.Намерете производната на функция

Решение. Дефинираме частите на израза на функцията: целият израз представлява продукт, а неговите множители са суми, във втория от които един от членовете съдържа постоянен множител. Прилагаме правилото за диференциране на продукта: производната на произведението на две функции е равна на сумата от произведенията на всяка от тези функции по производната на другата:

След това прилагаме правилото за диференциране на сумата: производната на алгебричната сума от функции е равна на алгебричната сума на производните на тези функции. В нашия случай във всяка сума вторият член има знак минус. Във всяка сума виждаме както независима променлива, чиято производна е равна на единица, така и константа (число), чиято производна е равна на нула. И така, "X" се превръща в едно, а минус 5 се превръща в нула. Във втория израз "x" се умножава по 2, така че ние умножаваме две по същата единица като производната на "x". Получаваме следните производни стойности:

Заместваме намерените производни в сумата от продуктите и получаваме производната на цялата функция, изисквана от условието на проблема:

Пример 4.Намерете производната на функция

Решение. От нас се изисква да намерим производната на частното. Прилагаме формулата за диференциране на частното: производната на частното на две функции е равна на дроб, чийто числител е разликата между произведенията на знаменателя и производната на числителя и числителя и производната на знаменател, а знаменателят е квадрат на предишния числител. Получаваме:

Вече намерихме производната на множителите в числителя в пример 2. Нека също така не забравяме, че произведението, което е вторият множител в числителя в настоящия пример, се приема със знак минус:

Ако търсите решения на задачи, в които трябва да намерите производната на функция, където има непрекъсната купчина корени и степени, като например , тогава добре дошли в класа "Производна на суми от дроби със степени и корени" .

Ако трябва да научите повече за производните на синуси, косинуси, тангенс и други тригонометрични функции, тоест когато функцията изглежда така , тогава урок за вас "Производни на прости тригонометрични функции" .

Пример 5.Намерете производната на функция

Решение. В тази функция виждаме произведение, един от множителите на което е корен квадратен от независимата променлива, с чиято производна се запознахме в таблицата с производни. Според правилото за диференциране на продукта и таблична стойностпроизводна на корен квадратен получаваме:

Пример 6.Намерете производната на функция

Решение. В тази функция виждаме частно, чийто дивидент е корен квадратен от независимата променлива. Използвайки правилото за диференциране на частните, което повторихме и приложихме в пример 4, и табличната стойност на производната на корен квадратен, получаваме:

За да се отървете от дроб в числителя, умножете числителя и знаменателя по .



Ново в сайта

>

Най - известен