У дома Зъболечение Правилото за отваряне на скоби в уравнение. Тема: Решаване на уравнения

Правилото за отваряне на скоби в уравнение. Тема: Решаване на уравнения

През пети век пр. н. е. древногръцкият философ Зенон от Елея формулира своите известни апории, най-известната от които е апорията „Ахил и костенурката“. Ето как звучи:

Да кажем, че Ахил тича десет пъти по-бързо от костенурката и е на хиляда стъпки зад нея. През времето, необходимо на Ахил да измине това разстояние, костенурката ще пропълзи стотина стъпки в същата посока. Когато Ахил пробяга сто крачки, костенурката пълзи още десет крачки и т.н. Процесът ще продължи безкрайно, Ахил никога няма да настигне костенурката.

Това разсъждение се превърна в логичен шок за всички следващи поколения. Аристотел, Диоген, Кант, Хегел, Хилберт... Всички те разглеждаха апориите на Зенон по един или друг начин. Шокът беше толкова силен, че " ...дискусиите продължават и до днес, за да се стигне до общо мнение за същността на парадоксите научна общностдосега не е било възможно... участваха в проучването на въпроса математически анализ, теория на множествата, нови физически и философски подходи; нито едно от тях не стана общоприето решение на проблема...„[Уикипедия, „Апория на Зенон“. Всички разбират, че ги заблуждават, но никой не разбира в какво се състои измамата.

От математическа гледна точка Зенон в своята апория ясно демонстрира прехода от количество към . Този преход предполага прилагане вместо постоянни. Доколкото разбирам, математическият апарат за използване на променливи мерни единици или все още не е разработен, или не е приложен към апориите на Зенон. Прилагането на обичайната ни логика ни вкарва в капан. Ние, поради инерцията на мисленето, прилагаме постоянни единици време към реципрочната стойност. От физическа гледна точка това изглежда като забавяне на времето, докато спре напълно в момента, в който Ахил настигне костенурката. Ако времето спре, Ахил вече не може да изпревари костенурката.

Ако обърнем обичайната си логика, всичко си идва на мястото. Ахил тича с постоянна скорост. Всеки следващ сегмент от пътя му е десет пъти по-кратък от предишния. Съответно времето, прекарано за преодоляването му, е десет пъти по-малко от предишното. Ако приложим концепцията за „безкрайност“ в тази ситуация, тогава би било правилно да кажем „Ахил ще настигне костенурката безкрайно бързо“.

Как да избегнем този логически капан? Останете в постоянни единици за време и не преминавайте към реципрочни единици. На езика на Зенон това изглежда така:

За времето, необходимо на Ахил да направи хиляда крачки, костенурката ще пропълзи стотина крачки в същата посока. През следващия интервал от време, равен на първия, Ахил ще направи още хиляда стъпки, а костенурката ще пропълзи сто стъпки. Сега Ахил е на осемстотин стъпки пред костенурката.

Този подход описва адекватно реалността без никакви логически парадокси. Но не е така цялостно решениепроблеми. Твърдението на Айнщайн за неустоимостта на скоростта на светлината е много подобно на апорията на Зенон „Ахил и костенурката“. Все още трябва да изучаваме, преосмисляме и решаваме този проблем. И решението трябва да се търси не в безкрайно големи числа, а в мерни единици.

Друга интересна апория на Зенон разказва за летяща стрела:

Летящата стрела е неподвижна, тъй като във всеки момент от времето тя е в покой, и тъй като е в покой във всеки момент от времето, тя винаги е в покой.

В тази апория логическият парадокс се преодолява много просто – достатъчно е да се изясни, че във всеки момент една летяща стрела е в покой в ​​различни точки на пространството, което всъщност е движение. Тук трябва да се отбележи още един момент. От една снимка на автомобил на пътя е невъзможно да се определи нито фактът на неговото движение, нито разстоянието до него. За да определите дали колата се движи, ви трябват две снимки, направени от една и съща точка в различни точки във времето, но не можете да определите разстоянието от тях. За да определите разстоянието до кола, имате нужда от две снимки, направени от различни точки в пространството в един момент във времето, но от тях не можете да определите факта на движение (разбира се, все още имате нужда от допълнителни данни за изчисления, тригонометрията ще ви помогне ). Това, което искам да отбележа Специално внимание, е, че две точки във времето и две точки в пространството са различни неща, които не бива да се бъркат, защото предоставят различни възможности за изследване.

Сряда, 4 юли 2018 г

Разликите между набор и мултимножество са описани много добре в Wikipedia. Да видим.

Както можете да видите, "не може да има два еднакви елемента в набор", но ако има идентични елементи в набор, такъв набор се нарича "мултисет". Разумните същества никога няма да разберат такава абсурдна логика. Това е нивото на говорещите папагали и дресираните маймуни, които нямат интелигентност от думата „напълно“. Математиците действат като обикновени обучители, проповядвайки ни своите абсурдни идеи.

Имало едно време инженерите, построили моста, били в лодка под моста, докато тествали моста. Ако мостът се срути, посредственият инженер загина под развалините на своето творение. Ако мостът можеше да издържи натоварването, талантливият инженер построи други мостове.

Колкото и да се крият математиците зад фразата „имайте предвид, аз съм в къщата“ или по-скоро „математиката изучава абстрактни понятия“, има една пъпна връв, която ги свързва неразривно с реалността. Тази пъпна връв е пари. Приложимо математическа теориязадава на самите математици.

Учихме много добре математика и сега седим на касата и даваме заплати. И така, един математик идва при нас за парите си. Ние му преброяваме цялата сума и я поставяме на масата си в различни купчини, в които поставяме банкноти от една и съща деноминация. След това вземаме по една банкнота от всяка купчина и даваме на математика неговия „математически набор от заплата“. Нека обясним на математика, че той ще получи останалите сметки едва когато докаже, че множество без еднакви елементи не е равно на множество с еднакви елементи. Тук започва забавлението.

На първо място ще работи логиката на депутатите: „Това може да се приложи към другите, но не и към мен!“ След това ще започнат да ни уверяват, че банкнотите с една и съща номинална стойност имат различни номера на банкнотите, което означава, че не могат да се считат за едни и същи елементи. Добре, да броим заплатите в монети - на монетите няма цифри. Тук математикът ще започне трескаво да си спомня физиката: различните монети имат различно количество мръсотия, кристалната структура и разположението на атомите е уникално за всяка монета...

И сега имам най-интересния въпрос: къде е линията, отвъд която елементите на мултимножество се превръщат в елементи на множество и обратно? Такава линия не съществува - всичко се решава от шаманите, тук науката дори не лъже.

Вижте тук. Ние избираме футболни стадионисъс същата площ на полето. Площите на полетата са еднакви - което означава, че имаме мултимножество. Но ако погледнем имената на същите тези стадиони, получаваме много, защото имената са различни. Както можете да видите, едно и също множество от елементи е едновременно множество и мултимножество. Кое е вярно? И ето че математикът-шаман-шарпист вади асо коз от ръкава си и започва да ни говори или за множество, или за мултимножество. При всички случаи той ще ни убеди, че е прав.

За да разберем как съвременните шамани оперират с теорията на множествата, обвързвайки я с реалността, е достатъчно да отговорим на един въпрос: как елементите на едно множество се различават от елементите на друго множество? Ще ви покажа, без никакво „мислимо като неединно цяло“ или „немислимо като единно цяло“.

Неделя, 18 март 2018 г

Сумата от цифрите на едно число е танц на шамани с тамбура, който няма нищо общо с математиката. Да, в уроците по математика ни учат да намираме сумата от цифрите на числото и да го използваме, но те затова са шамани, за да учат потомците на своите умения и мъдрост, иначе шаманите просто ще измрат.

Имате ли нужда от доказателство? Отворете Wikipedia и се опитайте да намерите страницата „Сума от цифри на число“. Тя не съществува. Няма формула в математиката, която може да се използва за намиране на сумата от цифрите на произволно число. В края на краищата числата са графични символи, с които пишем числа, а на езика на математиката задачата звучи така: „Намерете сумата от графични символи, представляващи произволно число.“ Математиците не могат да решат този проблем, но шаманите могат да го направят лесно.

Нека да разберем какво и как правим, за да намерим сумата от цифрите на дадено число. И така, нека имаме числото 12345. Какво трябва да се направи, за да се намери сборът от цифрите на това число? Нека разгледаме всички стъпки по ред.

1. Запишете числото на лист хартия. какво направихме Ние преобразувахме числото в графичен числов символ. Това не е математическа операция.

2. Разрязваме една получена картина на няколко картинки, съдържащи отделни числа. Изрязването на картина не е математическа операция.

3. Преобразувайте отделни графични символи в числа. Това не е математическа операция.

4. Съберете получените числа. Това вече е математика.

Сумата от цифрите на числото 12345 е 15. Това са „курсовете по кроене и шиене“, преподавани от шамани, които математиците използват. Но това не е всичко.

От математическа гледна точка няма значение в коя бройна система записваме едно число. И така, в различни системиВ смятането сумата от цифрите на едно и също число ще бъде различна. В математиката числовата система се обозначава като долен индекс отдясно на числото. СЪС Голям брой 12345 Не искам да си заблуждавам главата, нека погледнем числото 26 от статията за . Нека запишем това число в двоична, осмична, десетична и шестнадесетична бройни системи. Няма да разглеждаме всяка стъпка под микроскоп; вече сме го направили. Нека да видим резултата.

Както можете да видите, в различните бройни системи сумата от цифрите на едно и също число е различна. Този резултат няма нищо общо с математиката. Това е същото, както ако определите площта на правоъгълник в метри и сантиметри, ще получите напълно различни резултати.

Нулата изглежда еднакво във всички бройни системи и няма сбор от цифри. Това е още един аргумент в полза на факта, че. Въпрос към математиците: как в математиката се обозначава нещо, което не е число? Какво, за математиците не съществува нищо освен числата? Това мога да го позволя за шаманите, но не и за учените. Реалността не е само цифри.

Полученият резултат трябва да се счита за доказателство, че бройните системи са мерни единици за числа. В крайна сметка не можем да сравняваме числа с различни мерни единици. Ако едни и същи действия с различни мерни единици на една и съща величина водят до различни резултати след сравняването им, то това няма нищо общо с математиката.

Какво е истинска математика? Това е, когато резултатът от математическа операция не зависи от размера на числото, използваната мерна единица и от това кой извършва това действие.

Знак на вратата Той отваря вратата и казва:

о! Това не е ли женската тоалетна?
- Млада жена! Това е лаборатория за изследване на бездефилната святост на душите по време на възнесението им на небето! Ореол отгоре и стрелка нагоре. Каква друга тоалетна?

Жена... Ореолът отгоре и стрелката надолу са мъжки.

Ако такова произведение на дизайнерското изкуство мига пред очите ви няколко пъти на ден,

Тогава не е изненадващо, че изведнъж намирате странна икона в колата си:

Лично аз полагам усилия да видя минус четири градуса в акащ човек (една снимка) (композиция от няколко снимки: знак минус, число четири, обозначение на градуси). И не мисля, че това момиче е глупачка, която не знае физика. Тя просто има силен стереотип за възприемане на графични изображения. И математиците ни учат на това през цялото време. Ето един пример.

1А не е „минус четири градуса“ или „едно а“. Това е "какащ човек" или числото "двадесет и шест" в шестнадесетичен запис. Тези хора, които постоянно работят в тази бройна система, автоматично възприемат число и буква като един графичен символ.

В това видео ще анализираме цял набор от линейни уравнения, които се решават с помощта на същия алгоритъм - затова се наричат ​​най-простите.

Първо, нека да определим: какво е линейно уравнениеи кой от тях се нарича най-простият?

Линейно уравнение е това, в което има само една променлива и то само на първа степен.

Най-простото уравнение означава конструкцията:

Всички други линейни уравнения се свеждат до най-простите с помощта на алгоритъма:

  1. Разгънете скобите, ако има такива;
  2. Преместете термини, съдържащи променлива от едната страна на знака за равенство, и термини без променлива от другата;
  3. Дайте подобни термини отляво и отдясно на знака за равенство;
  4. Разделете полученото уравнение на коефициента на променливата $x$.

Разбира се, този алгоритъм не винаги помага. Факт е, че понякога след всички тези машинации коефициентът на променливата $x$ се оказва равен на нула. В този случай са възможни два варианта:

  1. Уравнението изобщо няма решения. Например, когато се получи нещо като $0\cdot x=8$, т.е. отляво е нула, а отдясно е число, различно от нула. Във видеото по-долу ще разгледаме няколко причини, поради които тази ситуация е възможна.
  2. Решението е всички числа. Единственият случай, когато това е възможно, е когато уравнението е сведено до конструкцията $0\cdot x=0$. Съвсем логично е, че каквито и $x$ да заместим, пак ще се получи „нула е равна на нула“, т.е. правилно числово равенство.

Сега нека видим как работи всичко това, използвайки примери от реалния живот.

Примери за решаване на уравнения

Днес се занимаваме с линейни уравнения и то само с най-простите. Най-общо линейно уравнение означава всяко равенство, което съдържа точно една променлива и то само на първа степен.

Такива конструкции се решават приблизително по същия начин:

  1. На първо място, трябва да разширите скобите, ако има такива (както в последния ни пример);
  2. След това комбинирайте подобни
  3. Накрая изолирайте променливата, т.е. преместете всичко, свързано с променливата - термините, в които се съдържа - от едната страна и преместете всичко, което остава без нея, от другата страна.

След това, като правило, трябва да дадете подобни от всяка страна на полученото равенство и след това всичко, което остава, е да разделим на коефициента на „x“ и ще получим окончателния отговор.

На теория това изглежда красиво и просто, но на практика дори опитни гимназисти могат да направят обидни грешки в доста прости линейни уравнения. Обикновено се допускат грешки или при отваряне на скоби, или при изчисляване на „плюсовете“ и „минусите“.

Освен това се случва линейното уравнение изобщо да няма решения или решението да е цялата числова линия, т.е. произволен брой. Ще разгледаме тези тънкости в днешния урок. Но ще започнем, както вече разбрахте, със самото прости задачи.

Схема за решаване на прости линейни уравнения

Първо, позволете ми отново да напиша цялата схема за решаване на най-простите линейни уравнения:

  1. Разширете скобите, ако има такива.
  2. Ние изолираме променливите, т.е. Преместваме всичко, което съдържа „X“ от едната страна, а всичко без „X“ от другата.
  3. Представяме подобни условия.
  4. Разделяме всичко на коефициента „х“.

Разбира се, тази схема не винаги работи; в нея има някои тънкости и трикове и сега ще се запознаем с тях.

Решаване на реални примери на прости линейни уравнения

Задача No1

Първата стъпка изисква да отворим скобите. Но те не са в този пример, така че пропускаме тази стъпка. Във втората стъпка трябва да изолираме променливите. Моля, обърнете внимание: говорим само за индивидуални условия. Нека го запишем:

Представяме подобни термини отляво и отдясно, но това вече е направено тук. Затова преминаваме към четвъртата стъпка: разделете на коефициента:

\[\frac(6x)(6)=-\frac(72)(6)\]

Така че получихме отговора.

Задача No2

Можем да видим скобите в този проблем, така че нека ги разширим:

И отляво, и отдясно виждаме приблизително същия дизайн, но нека действаме според алгоритъма, т.е. разделяне на променливите:

Ето някои подобни:

В какви корени работи това? Отговор: за всякакви. Следователно можем да запишем, че $x$ е произволно число.

Задача No3

Третото линейно уравнение е по-интересно:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тук има няколко скоби, но те не се умножават по нищо, а просто се предхождат от различни знаци. Нека ги разделим:

Извършваме втората стъпка, която вече ни е известна:

\[-x+x+2x=15-6-12+3\]

Нека направим сметката:

Извършваме последната стъпка - разделяме всичко на коефициента на “x”:

\[\frac(2x)(x)=\frac(0)(2)\]

Неща, които трябва да запомните, когато решавате линейни уравнения

Ако пренебрегнем твърде простите задачи, бих искал да кажа следното:

  • Както казах по-горе, не всяко линейно уравнение има решение - понякога просто няма корени;
  • Дори да има корени, сред тях може да има нула - в това няма нищо лошо.

Нула е същото число като останалите; не трябва да го дискриминирате по никакъв начин или да предполагате, че ако получите нула, значи сте направили нещо нередно.

Друга особеност е свързана с отварянето на скоби. Моля, обърнете внимание: когато има „минус“ пред тях, ние го премахваме, но в скоби променяме знаците на противоположност. И тогава можем да го отворим с помощта на стандартни алгоритми: ще получим това, което видяхме в изчисленията по-горе.

Разбирането на този прост факт ще ви помогне да избегнете глупави и болезнени грешки в гимназията, когато правенето на такива неща се приема за даденост.

Решаване на сложни линейни уравнения

Нека да преминем към по-сложни уравнения. Сега конструкциите ще станат по-сложни и при извършване на различни трансформации ще се появи квадратична функция. Но не трябва да се страхуваме от това, защото ако, според плана на автора, решаваме линейно уравнение, тогава по време на процеса на трансформация всички мономи, съдържащи квадратична функция, със сигурност ще се отменят.

Пример №1

Очевидно първата стъпка е отварянето на скобите. Нека направим това много внимателно:

Сега нека да разгледаме поверителността:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Ето някои подобни:

Очевидно това уравнение няма решения, така че ще напишем това в отговора:

\[\varnothing\]

или няма корени.

Пример №2

Извършваме същите действия. Първа стъпка:

Нека преместим всичко с променлива наляво, а без нея - надясно:

Ето някои подобни:

Очевидно това линейно уравнение няма решение, така че ще го запишем по следния начин:

\[\varnothing\],

или няма корени.

Нюанси на решението

И двете уравнения са напълно решени. Използвайки тези два израза като пример, ние отново се убедихме, че дори в най-простите линейни уравнения всичко може да не е толкова просто: може да има или един, или нито един, или безкрайно много корени. В нашия случай разгледахме две уравнения, като и двете просто нямат корени.

Но бих искал да обърна внимание на друг факт: как да работите със скоби и как да ги отворите, ако пред тях има знак минус. Помислете за този израз:

Преди да отворите, трябва да умножите всичко по „X“. Моля, обърнете внимание: умножава се всеки отделен термин. Вътре има два термина - съответно два термина и умножени.

И едва след като тези на пръв поглед елементарни, но много важни и опасни трансформации са завършени, можете да отворите скобата от гледна точка на това, че след нея има знак минус. Да, да: едва сега, когато трансформациите са завършени, ние си спомняме, че има знак минус пред скобите, което означава, че всичко по-долу просто променя знаците. В същото време самите скоби изчезват и, най-важното, предният „минус“ също изчезва.

Правим същото с второто уравнение:

Не случайно обръщам внимание на тези дребни, на пръв поглед незначителни факти. Тъй като решаването на уравнения винаги е последователност от елементарни трансформации, където невъзможността за ясно и компетентно извършване на прости действия води до факта, че учениците от гимназията идват при мен и отново се учат да решават такива прости уравнения.

Разбира се, ще дойде ден, когато ще усъвършенствате тези умения до степен на автоматизм. Вече няма да се налага да извършвате толкова много трансформации всеки път; ще пишете всичко на един ред. Но докато просто учите, трябва да напишете всяко действие отделно.

Решаване на още по-сложни линейни уравнения

Това, което ще решим сега, трудно може да се нарече най-простата задача, но смисълът остава същият.

Задача No1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

Нека умножим всички елементи от първата част:

Нека направим малко поверителност:

Ето някои подобни:

Нека завършим последната стъпка:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Ето нашия окончателен отговор. И въпреки факта, че в процеса на решаване имахме коефициенти с квадратична функция, те взаимно се компенсират, което прави уравнението линейно, а не квадратно.

Задача No2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Нека внимателно изпълним първата стъпка: умножете всеки елемент от първата скоба по всеки елемент от втората. След трансформациите трябва да има общо четири нови термина:

Сега нека внимателно извършим умножението във всеки член:

Нека преместим термините с "X" наляво, а тези без - надясно:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Ето подобни термини:

За пореден път получихме окончателния отговор.

Нюанси на решението

Най-важната бележка за тези две уравнения е следната: веднага щом започнем да умножаваме скоби, които съдържат повече от един член, това се прави съгласно следното правило: вземаме първия член от първия и умножаваме с всеки елемент от секундата; след това вземаме втория елемент от първия и по подобен начин умножаваме с всеки елемент от втория. В резултат на това ще имаме четири мандата.

За алгебричната сума

С този последен пример бих искал да напомня на учениците какво е алгебрична сума. В класическата математика под $1-7$ имаме предвид проста конструкция: извадете седем от едно. В алгебрата под това разбираме следното: към числото „едно“ добавяме друго число, а именно „минус седем“. Ето как алгебричната сума се различава от обикновената аритметична сума.

Веднага щом при извършване на всички трансформации, всяко събиране и умножение започнете да виждате конструкции, подобни на описаните по-горе, просто няма да имате проблеми в алгебрата, когато работите с полиноми и уравнения.

И накрая, нека да разгледаме още няколко примера, които ще бъдат още по-сложни от тези, които току-що разгледахме, и за да ги разрешим, ще трябва леко да разширим нашия стандартен алгоритъм.

Решаване на уравнения с дроби

За да решим такива задачи, ще трябва да добавим още една стъпка към нашия алгоритъм. Но първо, нека ви напомня за нашия алгоритъм:

  1. Отворете скобите.
  2. Отделни променливи.
  3. Донесете подобни.
  4. Разделете на съотношението.

Уви, този прекрасен алгоритъм, въпреки цялата му ефективност, се оказва не съвсем подходящ, когато имаме дроби пред себе си. И в това, което ще видим по-долу, имаме дроб както отляво, така и отдясно и в двете уравнения.

Как да работим в този случай? Да, много е просто! За да направите това, трябва да добавите още една стъпка към алгоритъма, която може да се направи както преди, така и след първото действие, а именно да се отървете от дроби. Така че алгоритъмът ще бъде както следва:

  1. Отървете се от дробите.
  2. Отворете скобите.
  3. Отделни променливи.
  4. Донесете подобни.
  5. Разделете на съотношението.

Какво означава „да се отървете от дроби“? И защо това може да се направи както след, така и преди първата стандартна стъпка? Всъщност в нашия случай всички дроби са числени в знаменателя си, т.е. Навсякъде знаменателят е просто число. Следователно, ако умножим двете страни на уравнението по това число, ще се отървем от дроби.

Пример №1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

Нека се отървем от дробите в това уравнение:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Моля, обърнете внимание: всичко се умножава по „четири“ веднъж, т.е. това, че имате две скоби, не означава, че трябва да умножите всяка от тях по "четири". Нека запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

Сега нека разширим:

Изключваме променливата:

Извършваме намаляване на подобни условия:

\[-4x=-1\наляво| :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Имаме окончателно решение, нека преминем към второто уравнение.

Пример №2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Тук извършваме всички същите действия:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Проблемът е решен.

Това всъщност е всичко, което исках да ви кажа днес.

Ключови точки

Основните констатации са:

  • Познаване на алгоритъма за решаване на линейни уравнения.
  • Възможност за отваряне на скоби.
  • Не се притеснявайте, ако видите квадратични функции, най-вероятно в процеса на по-нататъшни трансформации те ще намалеят.
  • Има три вида корени в линейните уравнения, дори и най-простите: един единствен корен, цялата числова линия е корен и никакви корени.

Надявам се, че този урок ще ви помогне да овладеете проста, но много важна тема за по-нататъшно разбиране на цялата математика. Ако нещо не е ясно, отидете на сайта и решете представените там примери. Очаквайте още много интересни неща!

Тази част от уравнението е изразът в скобите. За да отворите скоби, погледнете знака пред скобите. Ако има знак плюс, отварянето на скобите в израза няма да промени нищо: просто премахнете скобите. Ако има знак минус, когато отваряте скобите, трябва да промените всички знаци, които първоначално са били в скобите, на противоположните. Например -(2x-3)=-2x+3.

Умножение на две скоби.
Ако уравнението съдържа произведението на две скоби, отваряне на скобите според стандартно правило. Всеки член в първата скоба се умножава с всеки член във втората скоба. Получените числа се сумират. В този случай произведението на два „плюса“ или два „минуса“ дава на термина знак „плюс“ и ако факторите имат различни знаци, след което получава знак минус.
Нека помислим.
(5x+1)(3x-4)=5x*3x-5x*4+1*3x-1*4=15x^2-20x+3x-4=15x^2-17x-4.

Чрез отваряне на скоби, понякога повишаване на израз до . Формулите за повдигане на квадрат и куб трябва да се знаят наизуст и да се запомнят.
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
(a+b)^3=a^3+3a^2*b+3ab^2+b^3
(a-b)^3=a^3-3a^2*b+3ab^2-b^3
Формули за конструиране на израз, по-голям от три, могат да бъдат направени с помощта на триъгълника на Паскал.

източници:

  • формула за разширяване на скоби

Оградено в скоби математически операцииможе да съдържа променливи и изрази в различна степентрудности. За да умножите такива изрази, ще трябва да потърсите решение в общ изглед, отваряне на скобите и опростяване на резултата. Ако скобите съдържат операции без променливи, само с числови стойности, тогава отварянето на скобите не е необходимо, тъй като ако имате компютър, неговият потребител има достъп до много значителни изчислителни ресурси - по-лесно е да ги използвате, отколкото да опростите израза.

Инструкции

Умножете последователно всеки (или умалено с ), съдържащ се в една скоба, по съдържанието на всички останали скоби, ако искате да получите резултата в обща форма. Например, нека оригиналният израз бъде записан по следния начин: (5+x)∗(6-x)∗(x+2). Тогава последователното умножение (т.е. отварянето на скобите) ще даде следния резултат: (5+x)∗(6-x)∗(x+2) = (5∗6-5∗x)∗(5∗x+ 5∗2) + (6∗x-x∗x)∗(x∗x+2∗x) = (5∗6∗5∗x+5∗6∗5∗2) - (5∗x∗5∗x+ 5∗ x∗5∗2) + (6∗x∗x∗x+6∗x∗2∗x) - (x∗x∗x∗x+x∗x∗2∗x) = 5∗6∗5 ∗x + 5∗6∗5∗2 - 5∗x∗5∗x - 5∗x∗5∗2 + 6∗x∗x∗x + 6∗x∗2∗x - x∗x∗x∗x - x ∗x∗2∗x = 150∗x + 300 - 25∗x² - 50∗x + 6∗x³ + 12∗x² - x∗x³ - 2∗x³.

Опростете резултата, като съкратите изразите. Например, изразът, получен в предишната стъпка, може да бъде опростен, както следва: 150∗x + 300 - 25∗x² - 50∗x + 6∗x³ + 12∗x² - x∗x³ - 2∗x³ = 100∗x + 300 - 13∗ x² - 8∗x³ - x∗x³.

Използвайте калкулатор, ако трябва да умножите x равно на 4,75, което е (5+4,75)∗(6-4,75)∗(4,75+2). За да изчислите тази стойност, отидете на уебсайта на търсачката Google или Nigma и въведете израза в полето за заявка в оригиналната му форма (5+4,75)*(6-4,75)*(4,75+2). Google ще покаже 82.265625 веднага, без да натиска бутон, но Nigma трябва да изпрати данни до сървъра с едно натискане на бутон.

Основната функция на скобите е да променят реда на действията при изчисляване на стойности. Например, в числовия израз \(5·3+7\) първо ще се изчисли умножението, а след това събирането: \(5·3+7 =15+7=22\). Но в израза \(5·(3+7)\) първо ще се изчисли събирането в скоби и едва след това умножението: \(5·(3+7)=5·10=50\).


Пример. Разгънете скобата: \(-(4m+3)\).
Решение : \(-(4m+3)=-4m-3\).

Пример. Отворете скобата и дайте подобни членове \(5-(3x+2)+(2+3x)\).
Решение : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).


Пример. Разгънете скобите \(5(3-x)\).
Решение : В скобата имаме \(3\) и \(-x\), а преди скобата има петица. Това означава, че всеки член на скобата се умножава по \(5\) - напомням ви това Знакът за умножение между число и скоба не се пише в математиката, за да се намали размера на записите.


Пример. Разгънете скобите \(-2(-3x+5)\).
Решение : Както в предишния пример, \(-3x\) и \(5\) в скобите се умножават по \(-2\).

Пример. Опростете израза: \(5(x+y)-2(x-y)\).
Решение : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).


Остава да разгледаме последната ситуация.

При умножаване на скоба по скоба, всеки член на първата скоба се умножава с всеки член на втората:

\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

Пример. Разгънете скобите \((2-x)(3x-1)\).
Решение : Имаме продукт от скоби и той може да бъде разширен веднага с помощта на горната формула. Но за да не се объркаме, нека направим всичко стъпка по стъпка.
Стъпка 1. Премахнете първата скоба - умножете всеки член по втората скоба:

Стъпка 2. Разгънете продуктите на скобите и фактора, както е описано по-горе:
- Първо най-важното...

После второто.

Стъпка 3. Сега умножаваме и представяме подобни термини:

Не е необходимо да описвате всички трансформации толкова подробно, можете да ги умножите веднага. Но ако просто се учите как да отваряте скоби, пишете подробно, ще има по-малък шанс да направите грешки.

Забележка към целия раздел.Всъщност не е нужно да помните всичките четири правила, трябва да запомните само едно, това: \(c(a-b)=ca-cb\) . Защо? Защото, ако замените едно вместо c, получавате правилото \((a-b)=a-b\) . И ако заместим минус едно, получаваме правилото \(-(a-b)=-a+b\) . Е, ако замените друга скоба вместо c, можете да получите последното правило.

Скоба в скоба

Понякога на практика има проблеми със скоби, вложени в други скоби. Ето пример за такава задача: опростете израза \(7x+2(5-(3x+y))\).

За успешно решаване на такива задачи е необходимо:
- внимателно разбирайте влагането на скоби - коя в коя е;
- отворете скобите последователно, като започнете например от най-вътрешната.

Важно е при отваряне на една от скобите не докосвайте останалата част от изражението, просто го пренаписвам така, както е.
Нека да разгледаме задачата, написана по-горе, като пример.

Пример. Отворете скобите и дайте подобни членове \(7x+2(5-(3x+y))\).
Решение:


Пример. Отворете скобите и дайте подобни членове \(-(x+3(2x-1+(x-5)))\).
Решение :

\(-(x+3(2x-1\)\(+(x-5)\) \())\)

Тук има тройно влагане на скоби. Да започнем с най-вътрешния (маркиран в зелено). Има плюс пред скобата, така че просто се отделя.

\(-(x+3(2x-1\)\(+x-5\) \())\)

Сега трябва да отворите втората скоба, междинната. Но преди това ще опростим израза на подобните на призраци термини във втората скоба.

\(=-(x\)\(+3(3x-6)\) \()=\)

Сега отваряме втората скоба (маркирана в синьо). Преди скобата е фактор - така че всеки член в скобата се умножава по него.

\(=-(x\)\(+9x-18\) \()=\)

И отворете последната скоба. Има знак минус пред скобата, така че всички знаци са обърнати.

Разгъването на скоби е основно умение в математиката. Без това умение е невъзможно да имате оценка над C в 8 и 9 клас. Затова ви препоръчвам да разберете добре тази тема.

В тази статия ще разгледаме подробно основните правила на такава важна тема в курса по математика като отваряне на скоби. Трябва да знаете правилата за отваряне на скоби, за да решавате правилно уравнения, в които те се използват.

Как да отворите правилно скобите при добавяне

Разгънете скобите, предшествани от знака „+“.

Това е най-простият случай, защото ако има знак за добавяне пред скобите, знаците вътре в тях не се променят при отваряне на скобите. Пример:

(9 + 3) + (1 - 6 + 9) = 9 + 3 + 1 - 6 + 9 = 16.

Как да разширите скоби, предшествани от знак "-".

IN в такъв случайтрябва да пренапишете всички термини без скоби, но в същото време да промените всички знаци вътре в тях на противоположни. Знаците се променят само за термини от тези скоби, които са били предшествани от знака „-“. Пример:

(9 + 3) - (1 - 6 + 9) = 9 + 3 - 1 + 6 - 9 = 8.

Как се отварят скоби при умножение

Преди скобите има множително число

В този случай трябва да умножите всеки член по коефициент и да отворите скобите, без да променяте знаците. Ако множителят има знак „-“, тогава по време на умножението знаците на членовете се обръщат. Пример:

3 * (1 - 6 + 9) = 3 * 1 - 3 * 6 + 3 * 9 = 3 - 18 + 27 = 12.

Как се отварят две скоби със знак за умножение между тях

В този случай трябва да умножите всеки член от първите скоби с всеки член от вторите скоби и след това да добавите резултатите. Пример:

(9 + 3) * (1 - 6 + 9) = 9 * 1 + 9 * (- 6) + 9 * 9 + 3 * 1 + 3 * (- 6) + 3 * 9 = 9 - 54 + 81 + 3 - 18 + 27 = 48.

Как да отворите скоби в квадрат

Ако сумата или разликата на два члена е на квадрат, скобите трябва да се отворят по следната формула:

(x + y)^2 = x^2 + 2 * x * y + y^2.

В случай на минус в скобите формулата не се променя. Пример:

(9 + 3) ^ 2 = 9 ^ 2 + 2 * 9 * 3 + 3 ^ 2 = 144.

Как да разширите скобите до друга степен

Ако сумата или разликата на членовете е повишена, например, до 3-та или 4-та степен, тогава просто трябва да разбиете мощността на скобата на „квадрати“. Степените на еднаквите множители се събират, а при делението степента на делителя се изважда от степента на делимото. Пример:

(9 + 3) ^ 3 = ((9 + 3) ^ 2) * (9 + 3) = (9 ^ 2 + 2 * 9 * 3 + 3 ^ 2) * 12 = 1728.

Как да отворите 3 скоби

Има уравнения, в които 3 скоби се умножават наведнъж. В този случай първо трябва да умножите членовете на първите две скоби заедно и след това да умножите сумата от това умножение по членовете на третата скоба. Пример:

(1 + 2) * (3 + 4) * (5 - 6) = (3 + 4 + 6 + 8) * (5 - 6) = - 21.

Тези правила за отваряне на скоби се прилагат еднакво за решаване на линейни и тригонометрични уравнения.



Ново в сайта

>

Най - известен