Домой Ортопедия Все электронные формулы атом таблицы менделеева. Электронные формулы атомов и схемы

Все электронные формулы атом таблицы менделеева. Электронные формулы атомов и схемы

Давайте рассмотрим, как построен атом. Учитывайте, что речь будет вестись исключительно о моделях. На практике атомы представляют собой гораздо более сложную структуру. Но благодаря современным разработкам мы имеем возможность объяснять и даже успешно предсказывать свойства (пускай даже и не все). Итак, какова схема строения атома? Из чего он «сделаны»?

Планетарная модель атома

Впервые была предложена датским физиком Н. Бором в 1913 году. Это первая теория строения атома, основанная на научных фактах. К тому же она положила основу современной тематической терминологии. В ней электроны-частицы производят вращательные движения вокруг атома по такому же принципу, как планеты вокруг Солнца. Бор высказал предположение, что они могут существовать исключительно на орбитах, находящихся на строго определённом расстоянии от ядра. Почему именно так, учёный с позиции науки не смог объяснить, но такая модель потдтверждалась многими экспериментами. Для обозначения орбит использовались целые числа, начиная с единицы, которой нумеровалась, самая близкая к ядру. Все эти орбиты также называют уровнями. У атома водорода только один уровень, на котором вращается один электрон. Но сложные атомы имеют ещё уровни. Они делятся на составляющие, которые объединяют близкие по энергетическому потенциалу электроны. Так, второй уже имеет два подуровня - 2s и 2р. Третий имеет уже три - 3s, 3р и 3d. И так далее. Сначала «заселяются» более близкие к ядру подуровни, а потом дальние. На каждом из них может быть размещено только определённое количество электронов. Но это ещё не конец. Каждый подуровень делится на орбитали. Давайте проведём сравнение с обычной жизнью. Электронное облако атома сравнимо с городом. Уровни - это улицы. Подуровень - частный дом или квартира. Орбиталь - комната. В каждой из них «проживает» один или два электрона. Все они имеют конкретные адреса. Вот такой была первая схема строения атома. А напоследок про адреса электронов: они определяются наборами чисел, которые называют «квантовыми».

Волновая модель атома

Но со временем планетарная модель подверглась пересмотру. Была предложена вторая теория строения атома. Она более совершенна и позволяет объяснить результаты практических экспериментов. На смену первой пришла волновая модель атома, которую предложит Э. Шредингер. Тогда уже было установлено, что электрон может проявлять себя не только в качестве частицы, но и как волна. А что сделал Шредингер? Он применил уравнение, описывающее движение волны в Таким образом можно найти не траекторию движения электрона в атоме, а вероятность его обнаружения в определённой точке. Объединяет обе теории то, что элементарные частицы находятся на конкретных уровнях, подуровнях и орбиталях. На этом похожесть моделей заканчивается. Приведу один пример - в волновой теории орбиталью называется область, где можно будет найти электрон с вероятностью в 95%. На всё остальное пространство приходится 5%.Но в конечном итоге получилось, что особенности строения атомов изображаются с использование волновой модели, при том, что используется терминология используется общая.

Понятие вероятности в данном случае

Почему был использован этот термин? Гейзенбергом в 1927 г. был сформулирован принцип неопределенности, который сейчас используется, чтобы описывать движение микрочастиц. Он основан на их фундаментальном отличии от обычных физических тел. В чем оно заключается? Классическая механика предполагала, что человек может наблюдать явления, не влияя на них (наблюдение за небесными телами). На основе полученных данных можно рассчитать, где объект будет в определенный момент времени. Но в микромире дела необходимо обстоят по-другому. Так, к примеру, наблюдать за электроном, не влияя на него, сейчас не представляется возможным ввиду того, что энергии инструмента и частицы несопоставимы. Это приводит к тому, что меняется его местоположение элементарной частицы, состояние, направление, скорость движения и другие параметры. И бессмысленно говорить о точных характеристиках. Сам принцип неопределенности говорит нам о том, что невозможно вычислить точную траекторию полёта электрона вокруг ядра. Можно только указать вероятность нахождения частицы в определённом участке пространства. Вот такую особенность имеет строение атомов химических элементов. Но это следует учитывать исключительно ученым в практических экспериментах.

Состав атома

Но давайте сконцентрируемся на всём объекте рассмотрения. Итак, кроме неплохо рассмотренной электронной оболочки, второй составляющей атома является ядро. Оно состоит из позитивно заряженных протонов и нейтральных нейтронов. Все мы знакомы с таблицей Менделеева. Номер каждого элемента соответствует количеству протонов, что в нём есть. Количество нейтронов равняется разнице между массой атома и его количеством протонов. Могут и быть отклонения от этого правила. Тогда говорят о том, что присутствует изотоп элемента. Схема строения атома такова, что его «окружает» электронная оболочка. обычно равняется количеству протонов. Масса последнего примерно в 1840 раз больше, чем у первого, и примерно равна весу нейтрона. Радиус ядра составляет около 1/200000 диаметра атома. Сам он имеет сферическую форму. Таково, в общем, строение атомов химических элементов. Несмотря на различие в массе и свойствах, выглядят они примерно одинаково.

Орбиты

Говоря о том, что такое схема строения атома, нельзя умолчать о них. Итак, есть такие виды:

  1. s. Имеют сферическую форму.
  2. p. Являются похожими на объемные восьмерки или веретено.
  3. d и f. Имеют сложную форму, которая с трудом описывается формальным языком.

Электрон каждого типа можно с вероятностью в 95% найти на территории соответствующей орбитали. К представленной информации необходимо относиться спокойно, поскольку это, скорее, абстрактная математическая модель, нежели физическое реальное положение дел. Но при всём этом она обладает хорошей предсказательной силой относительно химических свойств атомов и даже молекул. Чем дальше от ядра расположен уровень, тем больше электронов можно на нём разместить. Так, количество орбиталей можно подсчитать с помощью специальной формулы: х 2 . Здесь х равно количеству уровней. А поскольку на орбитали можно разместить до двух электронов, то в конечном итоге формула их численного поиска будет выглядеть следующим образом: 2х 2 .

Орбиты: технические данные

Если говорить про строение атома фтора, то он будет иметь три орбитали. Все они будут заполнены. Энергия орбиталей в рамках одного подуровня одинакова. Чтобы их обозначить, добавляют номер слоя: 2s, 4p, 6d. Возвращаемся к разговору про строение атома фтора. У него будет два s- и один p-подуровень. У него девять протонов и столько же электронов. Сначала один s-уровень. Это два электрона. Потом второй s-уровень. Ещё два электрона. И 5 заполняют p-уровень. Вот такое у него строение. После прочтения следующего подзаголовка можно собственноручно проделать необходимые действия и убедиться в этом. Если говорить про к которым относится и фтор, то следует отметить, что они, хотя и в одной группе, полностью различаются по своим характеристикам. Так, их температура кипения колеблется от -188 до 309 градусов Цельсия. Так почему их объединили? Все благодаря химическим свойствам. Все галогены, а в наибольшей степени фтор обладают высочайшей окислительной способностью. Они реагируют с металлами и без проблем могут самостоятельно воспламеняться при комнатной температуре.

Как заполняются орбиты?

По каким правилам и принципам располагаются электроны? Предлагаем ознакомиться с тремя основными, формулировка которых была упрощена для лучшего понимания:

  1. Принцип наименьшей энергии. Электронам свойственно заполнять орбитали в порядке увеличения их энергии.
  2. Принцип Паули. На одной орбитали не может располагаться больше двух электронов.
  3. Правило Хунда. В пределах одного подуровня электроны заполняют сначала свободные орбитали, и только потом образуют пары.

В деле заполнения поможет и строение атома в таком случае станет более понятным в плане изображения. Поэтому при практической работе с построением схем элементов, необходимо держать её под рукой.

Пример

Для того, чтобы обобщить всё сказанное в рамках статьи, можно составить образец, как же распределяются электроны атома по своим уровням, подуровням и орбиталям (то есть, какой является конфигурация уровней). Он может быть изображен как формула, энергетическая диаграмма или как схема слоев. Здесь присутствуют очень хорошие иллюстрации, которые при внимательном рассмотрении помогают понять структуру атома. Так, сначала заполняется первый уровень. В нём имеется только один подуровень, в котором только одна орбиталь. Все уровни заполняются последовательно, начиная с меньшего. Сначала в рамках одного подуровня по одному электрону размещается на каждой орбитали. Потом создаются пары. И при наличии свободных происходит переключение на другой субъект заполнения. А теперь можно самостоятельно узнать, каково строение атома азота или фтора (который рассматривался раньше). Первоначально может быть немного сложно, но можно ориентироваться по картинкам. Давайте для ясности рассмотрим и строение атома азота. Он имеет 7 протонов (вместе с нейтронами составляющих ядро) и столько же электронов (которые составляют электронную оболочку). Сначала заполняется первый s-уровень. На нем 2 электрона. Потом идёт второй s-уровень. На ней тоже 2 электрона. И три остальных размещаются на p-уровне, где каждый из них занимает по одной орбитали.

Заключение

Как видите, строение атома - не такая сложная тема (если подходить к ней с позиции школьного курса химии, конечно). И понять данную тему не составляет труда. Напоследок хочется сообщить про некоторые особенности. К примеру, говоря про строение атома кислорода, мы знаем, что он имеет восемь протонов, и 8-10 нейтронов. И так как все в природе стремится к равновесию, два атома кислорода образуют молекулу, где два непарных электрона образуют ковалентную связь. Подобным же образом образуется другая стойкая молекула кислорода - озон (O 3). Зная строение атома кислорода, можно правильно составлять формулы окислительных реакций, в которых участвует самое распространенное на Земле вещество.

Состав атома.

Атом состоит из атомного ядра и электронной оболочки .

Ядро атома состоит из протонов (p + ) и нейтронов (n 0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N (p + ) равно заряду ядра (Z ) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N (p +) = Z

Сумма числа нейтронов N (n 0), обозначаемого просто буквой N , и числа протонов Z называется массовым числом и обозначается буквой А .

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е -).

Число электронов N (e -) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома - сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент - вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп - совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э - символ элемента), например: .


Строение электронной оболочки атома

Атомная орбиталь - состояние электрона в атоме. Условное обозначение орбитали - . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s , p , d и f .

Электронное облако - часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание : иногда понятия "атомная орбиталь" и "электронное облако" не различают, называя и то, и другое "атомной орбиталью".

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный ("энергетический") уровень , их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s -подуровень (состоит из одной s -орбитали), условное обозначение - .
p -подуровень (состоит из трех p
d -подуровень (состоит из пяти d -орбиталей), условное обозначение - .
f -подуровень (состоит из семи f -орбиталей), условное обозначение - .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s , 3p , 5d означает s -подуровень второго уровня, p -подуровень третьего уровня, d -подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n . Общее число орбиталей на одном уровне равно n 2 . Соответственно этому, общее число облаков в одном слое равно также n 2 .

Обозначения: - свободная орбиталь (без электронов), - орбиталь с неспаренным электроном, - орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии - электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули - на одной орбитали не может быть больше двух электронов.

3. Правило Хунда - в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n 2 .

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s , 5f , 6d , 7p ...

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев ("электронная схема").

Примеры электронного строения атомов:



Валентные электроны - электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны - 4s 2 , они же и валентные; у атома Fe внешние электроны - 4s 2 , но у него есть 3d 6 , следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция - 4s 2 , а атома железа - 4s 2 3d 6 .

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система - графическое выражение периодического закона.

Естественный ряд химических элементов - ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем "разрезания" естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные ), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице - восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице - шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB - побочной подгруппе седьмой группы: остальные - аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ ("неметалличность"),
  • ослабевают восстановительные свойства простых веществ ("металличность"),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ ("неметалличность"; только в А-группах),
  • усиливаются восстановительные свойства простых веществ ("металличность"; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).

Задачи и тесты по теме "Тема 9. "Строение атома. Периодический закон и периодическая система химических элементов Д. И. Менделеева (ПСХЭ)"."

  • Периодический закон - Периодический закон и строение атомов 8–9 класс
    Вы должны знать: законы заполнения орбиталей электронами (принцип наименьшей энергии, принцип Паули, правило Хунда), структуру периодической системы элементов.

    Вы должны уметь: определять состав атома по положению элемента в периодической системе, и, наоборот, находить элемент в периодической системе, зная его состав; изображать схему строения, электронную конфигурацию атома, иона, и, наоборот, определять по схеме и электронной конфигурации положение химического элемента в ПСХЭ; давать характеристику элемента и образуемых им веществ по его положению в ПСХЭ; определять изменения радиуса атомов, свойств химических элементов и образуемых ими веществ в пределах одного периода и одной главной подгруппы периодической системы.

    Пример 1. Определите количество орбиталей на третьем электронном уровне. Какие это орбитали?
    Для определения количества орбиталей воспользуемся формулой N орбиталей = n 2 , где n - номер уровня. N орбиталей = 3 2 = 9. Одна 3s -, три 3p - и пять 3d -орбиталей.

    Пример 2. Определите, у атома какого элемента электронная формула 1s 2 2s 2 2p 6 3s 2 3p 1 .
    Для того, чтобы определить, кокой это элемент, надо выяснить его порядковый номер, который равен суммарному числу электронов атома. В данном случае: 2 + 2 + 6 + 2 + 1 = 13. Это алюминий.

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 11 кл. М., Дрофа, 2002;
    • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени.
N - уровень
L - оболочка
M l - номер орбитали
M s - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона
На p-оболочке три орбитали (L=1) - шесть электронов
На d-оболочке пять орбиталей (L=2) - десять электронов
На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число m l

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой m l .

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения M l =-2,M l =-1,M l =0, M l =1,M l =2.

Спиновое квантовое число m s

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается m s

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона


Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, M l =0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Записывается в виде так называемых электронных формул. В электронных формулах буквами s, p, d, f обозначаются энергетические подуровни электронов; цифры впереди букв означают энергетический уровень, в котором находится данный электрон, а индекс вверху справа - число электронов на данном подуровне. Чтобы составить электронную формулу атома любого элемента, достаточно знать номер данного элемента в периодической системе и выполнить основные положения, которым подчиняется распределение электронов в атоме.

Структура электронной оболочки атома может быть изображена и в виде схемы размещения электронов по энергетическим ячейкам.

Для атомов железа такая схема имеет следующий вид:

На этой схеме наглядно видно выполнение правила Гунда . На Зd-подуровне максимальное количество, ячеек (четыре) заполнено неспаренными электронами. Изображение структуры электронной оболочки в атоме в виде электронных формул и в виде схем наглядно не отражает волновых свойств электрона.

Формулировка периодического закона в редакции Д.А. Менделеева : свойства простых тел, а так же формы и свойства соединений элементов находятся в периодической зависимости величины атомных весов элементов.

Современная формулировка Периодического закона : свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядра их атомов.

Таким образом, положительный заряд ядра (а не атомная масса) оказался более точным аргументом, от которого зависят свойства элементов и их соединений

Валентность - это число химических связей, которым один атом связан с другим.
Валентные возможности атома определяются числом неспаренных электронов и наличием на внешнем уровне свободных атомных орбиталей. Строение наружных энергетических уровней атомов химических элементов и определяет в основном свойства их атомов. Поэтому эти уровни называют валентными. Электроны этих уровней, а иногда и предвнешних уровней могут принимать участие в образовании химических связей. Такие электроны также называют валентными.

Стехиометрическая валентность химического элемента- это число эквивалентов, которое может к себе присоединить данный атом, или - число эквивалентов в атоме.

Эквиваленты определяются по числу присоединённых или замещённых атомов водорода , поэтому стехиометрическая валентность равна числу атомов водорода, с которыми взаимодействует данный атом. Но свободно взаимодействуют не все элементы, а с кислородом - практически все, поэтому стехиометрическую валентность можно определить как удвоенное число присоединённых атомов кислорода.


Например, стехиометрическая валентность серы в сероводороде H 2 S равна 2, в оксиде SO 2 - 4 , в оксиде SO 3 -6.

При определении стехиометрической валентности элемента по формуле бинарного соединения следует руководствоваться правилом: суммарная валентность всех атомов одного элемента должна быть равна суммарной валентности всех атомов другого элемента.

Степень окисления также характеризует состав вещества и равна стехиометрической валентности со знаком плюс (для металла или более электроположительного элемента в молекуле) или минус.

1. В простых веществах степень окисления элементов равна нулю.

2. Степень окисления фтора во всех соединениях равна -1. Остальные галогены (хлор, бром, иод) с металлами, водородом и другими более электроположительными элементами тоже имеют степень окисления -1, но в соединениях с более электроотрицательными элементами они имеют положительные значения степеней окисления.

3. Кислород в соединениях имеет степень окисления -2; исключением являются пероксид водорода Н 2 О 2 и его производные (Na 2 O 2 , BaO 2 и т.п., в которых кислород имеет степень окисления -1, а также фторид кислорода OF 2 , степень окисления кислорода в котором равна +2.

4. Щелочные элементы (Li, Na, K и др.) и элементы главной подгруппы второй группы Периодической системы (Be, Mg, Ca и др.) всегда имеют степень окисления, равную номеру группы, то есть +1 и +2, соответственно.

5. Все элементы третьей группы, кроме таллия имеют постоянную степень окисления, равную номеру группы, т.е. +3.

6. Высшая степень окисления элемента равна номеру группы Периодической системы, а низшая - разности: № группы - 8. Например, высшая степень окисления азота (он расположен в пятой группе) равна +5 (в азотной кислоте и её солях), а низшая равна -3 (в аммиаке и солях аммония).

7. Степени окисления элементов в соединении компенсируют друг друга так, что их сумма для всех атомов в молекуле или нейтральной формульной единице равна нулю, а для иона - его заряду.

Эти правила можно использовать для определения неизвестной степени окисления элемента в соединении, если известны степени окисления остальных, и составления формул многоэлементных соединений.

Сте?пень окисле?ния (окислительное число, ) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций.

Понятие степень окисления часто используют в неорганической химии вместо понятия валентность . Степень окисления атома равна численной величине электрического заряда, приписываемого атому в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов (то есть исходя из предположения, что соединение состоит только из ионов).

Степень окисления соответствует числу электронов, которое следует присоединить к положительному иону, чтобы восстановить его до нейтрального атома, или отнять от отрицательного иона, чтобы окислить его до нейтрального атома:

Al 3+ + 3e − → Al
S 2− → S + 2e − (S 2− − 2e − → S)

Свойства элементов, зависящие от строения электронной оболочки атома, изменяются по периодам и группам периодической системы. Поскольку в ряду элементов-аналогов электронные структуры лишь сходны, но не тождественны, то при переходе от одного элемента в группе к другому для них наблюдается не простое повторение свойств, а их более или менее отчетливо выраженное закономерное изменение.

Химическая природа элемента обусловлена способностью его атома терять или приобретать электроны. Эта способность количественно оценивается величинами энергий ионизации и сродства к электрону.

Энергией ионизации (Eи ) называется минимальное количество энергии, необходимое для отрыва и полного удаления электрона из атома в газовой фазе при T = 0

K без передачи освобожденному электрону кинетической энергии с превращением атома в положительно заряженный ион: Э + Eи = Э+ + e-. Энергия ионизации является положительной величиной и имеет наименьшие значения у атомов щелочных металлов и наибольшие у атомов благородных (инертных) газов.

Сродством к электрону (Ee ) называется энергия, выделяемая или поглощаемая при присоединении электрона атому в газовой фазе при T = 0

K с превращением атома в отрицательно заряженный ион без передачи частице кинетической энергии:

Э + e- = Э- + Ee.

Максимальным сродством к электрону обладают галогены, особенно фтор (Ee = -328 кДж/моль).

Величины Eи и Ee выражают в килоджоулях на моль (кДж/моль) или в электрон-вольтах на атом (эВ).

Способность связанного атома смещать к себе электроны химических связей, повышая около себя электронную плотность называется электроотрицательностью.

Это понятие в науку введено Л. Полингом . Электроотрицательность обозначается символом ÷ и характеризует стремление данного атома к присоединению электронов при образовании им химической связи.

По Р. Маликену электротрицательность атома оценивается полусуммой энергий ионизации и сродства к электрону свободных атом÷ = (Ee + Eи)/2

В периодах наблюдается общая тенденция роста энергии ионизации и электроотрицательности с ростом заряда ядра атома, в группах эти величины с увеличением порядкового номера элемента убывают.

Следует подчеркнуть, что элементу нельзя приписать постоянное значение электроотрицательности, так как оно зависит от многих факторов, в частности от валентного состояния элемента, типа соединения, в которое он входит, числа и вида атомов-соседей.

Атомные и ионные радиусы . Размеры атомов и ионов определяются размерами электронной оболочки. Согласно квантово-механическим представления электронная оболочка не имеет строго определенных границ. Поэтому за радиус свободного атома или иона можно принять теоретически рассчитанное расстояние от ядра до положения главного максимума плотности внешних электронных облаков. Это расстояние называется орбитальным радиусом. На практике обычно используют значения радиусов атомов и ионов, находящихся в соединениях, вычисленные исходя из экспериментальных данных. При этом различают ковалентные и металлические радиусы атомов.

Зависимость атомных и ионных радиусов от заряда ядра атома элемента и носит периодический характер . В периодах по мере увеличения атомного номера радиусы имеют тенденцию к уменьшению. Наибольшее уменьшение характерно для элементов малых периодов, поскольку у них заполняется внешний электронный уровень. В больших периодах в семействах d- и f- элементов это изменение менее резкое, так как у них заполнение электронов происходит в предпредвнешнем слое. В подгруппах радиусы атомов и однотипных ионов в общем увеличиваются.

Периодическая система элементов есть наглядный пример проявления различного рода периодичности в свойствах элементов, которая соблюдается по горизонтали (в периоде слева направо), по вертикали (в группе, например, сверху вниз), по диагонали, т.е. какое-то свойство атома усиливается или уменьшается, но периодичность сохраняется.

В периоде слева направо (→) увеличиваются окислительные и неметаллические свойства элементов, а восстановительные и металлические свойства уменьшаются. Так, из всех элементов 3 периода натрий будет самым активным металлом и самым сильным восстановителем, а хлор - самым сильным окислителем.

Химическая связь - это взаимное соединение атомов в молекуле, или кристаллической решетке, в результате действия между атомами электрических сил притяжения.

Это взаимодействие всех электронов и всех ядер, приводящих к образованию устойчивой, многоатомной системы (радикал, молекулярный ион, молекула, кристалл).

Химическая связь осуществляется валентными электронами. По современным представлениям химическая связь имеет электронную природу, но осуществляется она по-разному. Поэтому различают три основных типа химической связи: ковалентную, ионную, металлическую .Между молекулами возникает водородная связь, и происходят вандерваальсовые взаимодействия .

К основным характеристикам химической связи относятся:

- длина связи - это межъядерное расстояние между химически связанными атомами.

Она зависит от природы взаимодействующих атомов и от кратности связи. С увеличением кратности длина связи уменьшается, а, следовательно, увеличивается ее прочность;

- кратность связи - определяется числом электронных пар, связывающих два атома. С увеличением кратности энергия связи возрастает;

- угол связи - угол между воображаемыми прямыми проходящими через ядра двух химически взаимосвязанных соседних атомов;

Энергия связи Е СВ - это энергия, которая выделяется при образовании данной связи и затрачивается на ее разрыв, кДж/моль.

Ковалентная связь - Химическая связь, образованная путем обобществления пары электронов двумя атомами.

Объяснение химической связи возникновением общих электронных пар между атомами легло в основу спиновой теории валентности, инструментом которой является метод валентных связей (МВС) , открытый Льюисом в 1916 г. Для квантово-механического описания химической связи и строения молекул применяют ещё один метод - метод молекулярных орбиталей (ММО) .

Метод валентных связей

Основные принципы образования химической связи по МВС:

1. Химическая связь образуется за счет валентных (неспаренных) электронов.

2. Электроны с антипараллельными спинами, принадлежащие двум различным атомам, становятся общими.

3. Химическая связь образуется только в том случае, если при сближении двух и более атомов полная энергия системы понижается.

4. Основные силы, действующие в молекуле, имеют электрическое, кулоновское происхождение.

5. Связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Существует два механизма образования ковалентной связи:

Обменный механизм. Связь образована путем обобществления валентных электронов двух нейтральных атомов. Каждый атом дает по одному неспаренному электрону в общую электронную пару:

Рис. 7. Обменный механизм образования ковалентной связи: а - неполярной; б - полярной

Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь.

Соединения, образованные по донорно-акцепторному механизму, относятся к комплексным соединениям

Рис. 8. Донорно-акцепторный механизм образования ковалентной связи

Ковалентная связь имеет определенные характеристики.

Насыщаемость - свойство атомов образовывать строго определенное число ковалентных связей. Благодаря насыщаемости связей молекулы имеют определенный состав.

Направленность - т. е. связь образуется в направлении максимального перекрытия электронных облаков . Относительно линии соединяющей центры атомов образующих связь различают: σ и π(рис. 9): σ-связь - образована перекрыванием АО по линии соединяющей центры взаимодействующих атомов; π-связь - это связь, возникающая в направлении оси перпендикулярной прямой, соединяющей ядра атома. Направленность связи обусловливает пространственную структуру молекул, т. е. их геометрическую форму.

Гибридизация - это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей. Химическая связь, образуемая с участием электронов гибридных орбиталей, более прочная, чем связь с участием электронов негибридных s- и р-орбиталей, так как происходит большее перекрывание. Различают следующие виды гибридизации (рис. 10, табл. 31): sp-гибридизация - одна s-орбиталь и одна p-орбиталь превращаются в две одинаковые «гибридные» орбитали, угол между осями которых равен 180°. Молекулы, в которых осуществляется sp-гибридизация, имеют линейную геометрию (BeCl 2).

sp 2 -гибридизация - одна s-орбиталь и две p-орбитали превращаются в три одинаковые «гибридные» орбитали, угол между осями которых равен 120°. Молекулы, в которых осуществляется sp 2 -гибридизация, имеют плоскую геометрию (BF 3 , AlCl 3).

sp 3 -гибридизация - одна s-орбиталь и три p-орбитали превращаются в четыре одинаковые «гибридные» орбитали, угол между осями которых равен 109°28". Молекулы, в которых осуществляется sp 3 -гибридизация, имеют тетраэдрическую геометрию (CH 4 , NH 3).

Рис. 10. Виды гибридизаций валентных орбиталей: а - sp -гибридизация валентных орбиталей; б - sp 2 - гибридизация валентных орбиталей; в - sp 3 -гибридиза-ция валентных орбиталей

Любое вещество состоит из очень маленьких частиц, называемых атомами . Атом-это наименьшая частица химического элемента, сохраняющая все его характерные свойства. Чтобы представить себе размеры атома, достаточно сказать что если бы их удалось уложить вплотную один к другому, то один миллион атомов занял бы расстояние всего в 0,1 мм.

Дальнейшее развитие науки о строении вещества показало, что атом также имеет сложное строение и состоит из электронов и протонов. Так возникла электронная теория строения вещества.

В глубокой древности было обнаружено, что существуют два рода электричества: положительное и отрицательное. Количество электричества, содержащееся в теле, стали называть зарядом. В зависимости от рода электричества, которым обладает тело, заряд может быть положительным или отрицательным.

Было также установлено опытным путем, что одноименные заряды отталкиваются, а разноименные притягиваются.

Рассмотрим электронное строение атома . Атомы состоят из еще более мелких частиц, чем они сами, называемых электронами .

ОПРЕДЕЛЕНИЕ: Электрон - это мельчайшая частица вещества, имеющая наименьший отрицательный электрический заряд.

Электроны вращаются вокруг центрального ядра, состоящего из одного или более протонов и нейтронов , по концентрическим орбитам. Электроны являются отрицательно заряженными частицами, протоны - положительными, а нейтроны - нейтральными (рисунок 1.1).

ОПРЕДЕЛЕНИЕ: Протон - мельчайшая частица вещества, имеющая наименьший положительный электрический заряд.

Существование электронов и протонов не вызывает никакого сомнения. Ученые не только определили массу, заряд и размеры электронов и протонов, но даже заставили их работать в различных электрических и радиотехнических приборах.

Было также установлено, что масса электрона зависит от скорости его движения и что электрон не только поступательно движется в пространстве, но и вращается вокруг своей оси.

Наиболее простым по своему строению является атом водорода (рис. 1.1). Он состоит из ядра-протона и вращающегося с огромной скоростью вокруг ядра электрона, образующего внешнюю оболочку (орбиту) атома. Более сложные атомы имеют несколько оболочек, по которым вращаются электроны.

Эти оболочки последовательно от ядра заполняются электронами (рисунок 1.2).

Теперь разберем . Самая внешняя оболочка называется валентной , а число электронов, содержащееся в ней, называется валентностью . Чем дальше находится от ядра валентная оболочка, следовательно, тем меньшую силу притяжения испытывает каждый валентный электрон со стороны ядра. Тем самым у атома увеличивается возможность присоединять к себе электроны в том случае, если валентная оболочка не заполнена и расположена далеко от ядра, либо терять их.
Электроны внешней оболочки могут получать энергию. Если электроны находящиеся в валентной оболочке получат необходимый уровень энергии от внешних сил, они могут оторваться от нее и покинуть атом, то есть стать свободными электронами. Свободные электроны способны произвольно перемещаться от одного атома к атому. Те материалы, в которых содержится большое число свободных электронов, называются проводниками .

Изоляторы , есть противоположность проводникам. Они препятствуют протеканию электрического тока. Изоляторы стабильны потому, что валентные электроны одних атомов заполняют валентные оболочки других атомов, присоединяясь к ним. Это препятствует образованию свободных электронов.
Промежуточное положение между изоляторами и проводниками занимают полупроводники , но о них мы поговорим позже
Рассмотрим свойства атома . Атом, который имеет одинаковое число электронов и протонов, электрически нейтрален. Атом, получающий один или более электронов, становится отрицательно заряженным и имеет название отрицательный ион. Если атом теряет один или более электронов, то он становится положительным ионом, то есть заряжается положительно.



Новое на сайте

>

Самое популярное