Домой Профилактика Орган слуха и равновесия рыб. Способны ли рыбы слышать? Как работают органы слуха у рыб

Орган слуха и равновесия рыб. Способны ли рыбы слышать? Как работают органы слуха у рыб

Он расположен в задней части черепной коробки и представлен лабиринтом; ушных отверстий, ушной раковины и улитки нет, т. е. орган слуха представлен внутренним ухом. Наибольшей сложности достигает он у настоящих рыб: большой перепончатый лабиринт помещается в хрящевой или костной камере под прикрытием ушных костей. В нем различают верхнюю часть – овальный мешочек (ушко, utriculus) и нижнюю – круглый мешочек (sacculus). От верхней части во взаимно перпендикулярных направлениях отходят три полукружных канала, каждый из которых на одном конце расширен в ампулу. Овальный мешочек с полукружными каналами составляет орган равновесия (вестибулярный аппарат). Боковое расширение нижней части круглого мешочка (lagena), являющееся зачатком улитки, не получает у рыб дальнейшего развития. От круглого мешочка отходит внутренний лимфатический (эндолимфатический) канал, который у акул и скатов через специальное отверстие в черепе выходит наружу, а у остальных рыб слепо заканчивается у кожи головы.

Эпителий, выстилающий отделы лабиринта, имеет чувствующие клетки с волосками, отходящими во внутреннюю полость. Основания их оплетены разветвлениями слухового нерва. Полость лабиринта заполнена эндолимфой, в ней находятся ‛слуховые“ камешки, состоящие из углекислой извести (отолиты), по три с каждой стороны головы: в овальном и круглом мешочке и лагене. На отолитах, как и на чешуе, образуются концентрические слои, поэтому отолиты, и особенно наибольший, часто используют для определения возраста рыб, а иногда и для систематических определений, так как их размеры и контуры неодинаковы у различных видов.

С лабиринтом связано чувство равновесия: при передвижении рыбы давление эндолимфы в полукружных каналах, а также со стороны отолита изменяется и возникшее раздражение улавливается нервными окончаниями. При экспериментальном разрушении верхней части лабиринта с полукружными каналами рыба теряет способность удерживать равновесие и лежит на боку, спине или брюхе. Разрушение нижней части лабиринта не ведет к утрате равновесия.

С нижней частью лабиринта связано восприятие звуков: при удалении нижней части лабиринта с круглым мешочком и лагеной рыбы не в состоянии различать звуковые тона (при попытках выработать условный рефлекс). В то же время рыбы без овального мешочка и полукружных каналов, т.е. без верхней части лабиринта, дрессировке поддаются. Таким образом, было показано, что рецепторами звука являются именно круглый мешочек и лагена.

Рыбы воспринимают как механические, так и звуковые колебания: частотой от 5 до 25 Гц – органами боковой линии, от 16 до 13 000 Гц – лабиринтом. Некоторые виды рыб улавливают колебания, находящиеся на границе инфразвуковых волн и боковой линией, и лабиринтом.


Острота слуха у рыб ниже, чем у высших позвоночных, и у разных видов неодинакова: язь воспринимает колебания, длина волны которых составляет 25–5524 Гц, серебряный карась – 25–3840, угорь – 36–650 Гц, причем низкие звуки улавливаются ими лучше.

Рыбы улавливают и те звуки, источник которых находится не в воде, а в атмосфере, несмотря на то что такой звук на 99,9% отражается поверхностью воды и, следовательно, в воду проникает только 0,1 % образующихся звуковых волн. В восприятии звука у карповых, сомовых рыб большую роль играет плавательный пузырь, соединенный с лабиринтом и служащий резонатором.

О том, что рыбы реагируют на звуки, известно давно. Шум или звук может как пугать, так и привлекать рыбу, всякий шум, созданный в воде, раздражает рыбу. Объясняется это тем, что звуки, возникающие воде, рыбы способны слышать на значительном расстоянии.

Рыбы могут и сами издавать звуки. Звукоиздающие органы у рыб различны: плавательный пузырь (горбыли, губаны и др.), лучи грудных плавников в комбинации с костями плечевого пояса (сомы), челюстные и глоточные зубы (окуневые и карповые) и др. Сила и частота звуков, издаваемых рыбами одного вида, зависит от пола, возраста, пищевой активности, здоровья, причиняемой боли и т. д.

Звучание и восприятие звуков имеет большое значение в жизнедеятельности рыб: оно помогает особям разного пола найти друг друга, сохранить стаю, сообщить сородичам о присутствии пищи, охранять территорию, гнездо и потомство от врагов, является стимулятором созревания во время брачных игр, т. е. служит важным средством общения.

Реакция разных рыб на посторонние звуки различна.

Главными механорецепторами рыб являются органы слуха , которые функционируют как органы слуха и равновесия, а также органы боковой линии. Внутреннее ухо пластинчатожаберных (акул и скатов) и костистых рыб состоит из трех полукруглых каналов, расположенных в трех взаимно-перпендикулярных плоскостях, и трех камер, каждая из которых вмещает отолиты. Некоторые виды рыб (например, серебряный карась и разные виды сомов) имеют комплекс косточек, которые называются Вебберов аппарат и соединяют ухо с плавательным пузырем. Благодаря этой адаптации внешние вибрации усиливаются плавательным пузырем, как резонатором.

Ощущение электрического поля - электрорецепция - присуще многим видам рыб - не только тем, которые могут сами генерировать электрические разряды.

Вопросы для самоконтроля

1. Какие виды мышечной ткани вы знаете?

2. Перечислите основные свойства мышечной ткани?

3. Назовите отличия поперечнополосатой и гладкой мышечных тканей?

4. В чем заключаются особенности сердечной мышечной ткани?

5. Какие типы нервной ткани вы знаете?

6. По каким признакам разделяются нервные клетки?

7. Опишите строение нервной клетки.

8. Какие виды синапсов вы знаете? В чем их от­личия?

9. Что такое нейроглия? Какие виды нейроглии есть в организме?

10.Какие отделы относятся к головному мозгу рыб?

СПИСОК ЛИТЕРАТУРЫ

Основная

1.Калайда, М.Л. Общая гистология и эмбриология рыб / М.Л. Калайда, М.В. Нигметзянова, С.Д. Борисова // - Проспект науки. Санкт- Петербург. - 2011. - 142 с.

2. Козлов, Н.А. Общая гистология / Н.А. Козлов // - Санкт- Петербург- Москва- Краснодар. «Лань». - 2004 г.

3. Константинов, В.М. Сравнительная анатомия позвоночных животных / В.М. Константинов, С.П. Шаталова // Издательство: "Академия", Москва. 2005. 304 с.

4. Павлов, Д.А. Морфологическая изменчивость в раннем онтогенезе костистых рыб / Д.А. Павлов // М.: ГЕОС, 2007. 262 с.

Дополнительная

1. Афанасьев, Ю.И. Гистология / Ю.И. Афанасьев [и др.] // - М.. “Медицина”. 2001 г.

2.Быков, В.Л. Цитология и общая гистология / В.Л. Быков // - СПб.: “Сотис”. 2000 г.

3.Александровская, О.В. Цитология, гистология, эмбриология / О.В. Александровская [и др.] // - М. 1987 г.

Орган слуха и его значение для рыбы . Мы не находим у рыбы ни ушных раковин, ни ушных отверстий. Но это еще не значит, что у рыбы нет внутреннего уха, ведь и у нас наружное ухо само не ощущает звуков, а только помогает звуку достигнуть настоящего слухового органа - внутреннего уха, которое помещается в толще височной черепной кости. Соответственные органы у рыбы помещаются также в черепе, по бокам головного мозга.

Каждый из них имеет вид пузырька, наполненного жидкостью. Звук может передаваться такому внутреннему уху через кости черепа, а возможность такой передачи звука мы можем обнаружить и на собственном опыте (плотно заткнув уши, приблизьте к самому лицу карманные или наручные часы - и вы не услышите их тиканья; приложите потом часы к зубам - тиканье часов будет слышно ясно).

Однако едва ли возможно сомневаться, что первоначальной и основной функцией слуховых пузырьков, когда они сформировались у древних предков всех позвоночных, было ощущение вертикального положения и что в первую очередь они являлись для водного животного статическими органами, или органами равновесия, вполне аналогичными статоцистам других свободноплавающих водных животных, начиная уже с медуз. Мы уже знакомились с ними при изучении строения речного рака. Таково же их важное жизненнее значение и для рыбы, которая, согласно закону Архимеда, в водной среде практически оказывается "невесомой" и не может ощущать силы земного притяжения. Но зато каждое изменение в положении тела рыба ощущает слуховыми нервами, идущими к ее внутреннему уху. Ее слуховой пузырек наполнен жидкостью, в которой лежат крошечные, но весомые слуховые косточки: перекатываясь по дну слухового пузырька, они и дают рыбе возможность постоянно чувствовать вертикальное направление и сообразно этому двигаться.

Чувство слуха у рыб . Отсюда естественно возникает вопрос: способен ли этот орган равновесия воспринимать звуковые сигналы и можем ли мы приписывать рыбам также и чувство слуха?

Этот вопрос имеет очень интересную историю, охватывающую несколько десятилетий XX века. В прежние времена наличие у рыб слуха не вызывало сомнений, а в подтверждение приводились рассказы о прудовых карасях и карпах, приученных приплывать к берегу по звуку колокольчика. Однако позднее факты (или их истолкование) были подвергнуты сомнению. Оказалось, что гели человек звонил в колокольчик, прятавшись за каким-либо столбом на истине, то рыбы не подплывали. Отсюда делалось заключение, что внутреннее ухо рыб служит только гидростатическим органом, способным еще воспринимать только резкие колебания, возникающие в водной среде (удары весла, стук от колес парохода и т. п.), что настоящим органом слуха их считать нельзя. Указывалось и на несовершенство строения слухового пузырька рыб по сравнению с органом слуха наземных позвоночных, и на безмолвие водной среды, и на общепризнанную тогда немоту самих рыб, так резко отличающую их от квакающих лягушек голосистых птиц.

Однако позднее опыты проф. Ю. П. Фролова, проведенные со всеми предосторожностями по методу акад. П. Павлова, убедительно показали, го рыбы обладают слухом: они реагируют на звуки электрического колокольца, не сопровождаемые какими-нибудь другими (световыми, механическими) раздражителями.

И наконец, уже сравнительно недавно было установлено, что, вопреки известной поговорке, рыбы вовсе не немы, наоборот, скорее "болтливы" и "то чувство слуха играет важную роль их повседневной жизни.

Как это бывает нередко, новая методика вошла в биологию из совершено другой области - на этот раз из тактики военно-морского дела. Когда в составе вооруженных сил различных государств появились подводные лодки, то в интересах обороны своей страны изобретатели стали разрабатывать методы обнаружения в глубинах приближающихся неприятельских подводных лодок. Новый метод прослушивания не только обнаружил, что рыбы (а также и дельфины) способны издавать различные звуки - то цокающие, то напоминающие голоса ночных птиц или куриное кудахтание, то негромкие удары в барабан, но и дал возможность изучить и "лексикон" отдельных видов рыб. Подобно различным птичьим накрикам, одни из таких звуков служат выражением эмоций, другие оказываются сигналами угрозы, предупреждения об опасности, привлечения и взаимного контакта (у рыб, странствующих стаями, или косяками).

Схематический продольный разрещ сердца рыбы

Голоса многих рыб записаны на магнитофонную ленту. Гидроакустический метод обнаружил, что рыбы способны издавать не только звуки, доступные нашему слуху, но и неслышные для нас ультразвуковые колебания, которые также имеют сигнальное значение.

Все сказанное выше о звуковых сигналах относится почти исключительно к костистым рыбам, т. е. к первичноводным позвоночным, стоящим уже на более высокой ступени организации. У низших позвоночных - круглоротых, имеющих лабиринт более простого строения, наличие слуха пока не обнаружено, и у них слуховой пузырек, по-видимому, служит только статическим органом.

Внутреннее ухо рыбы - слуховые пузырьки - представляет собой хороший пример, иллюстрирующий очень важный в системе учения Дарвина принцип смены функций: орган, возникший у первичноводных позвоночных как орган равновесия, попутно воспринимает и звуковые колебания, хотя эта способность и не имеет в данных условиях важного значения для животного. Однако с выходом позвоночных из "безмолвных" водоемов в наземную среду, полную живых голосов и других звуков, ведущее значение получает уже способность улавливать и различать звуки, и ухо становится общепризнанным органом слуха. Его первоначальная функция отходит на задний план, но в соответствующих условиях проявляется и у наземных позвоночных: лягушка с искусственно разрушенным внутренним ухом, нормально передвигающаяся на суше, попадая в воду, не сохраняет естественного положения тела и плавает либо на боку, либо вверх брюхом.

Чешуя . Тело у рыб большей частью покрыто твердыми и прочными чешуями, которые сидят в складках кожи, как у нас ногти, а свободными концами налегают друг на друга, точно черепица на крыше. Проведите рукой по телу рыбы от головы к хвосту: кожа окажется гладкой и скользкой, потому что все чешуи направлены назад, плотно прижаты друг к другу и, вдобавок, их покрывает еще тонкая слизистая подкожица, которая еще более уменьшает трение. Попробуйте провести пинцетом или кончиком ножа в обратном направлении - от хвоста к голове - и вы почувствуете, как он будет цепляться, и задерживаться на каждой чешуе. Значит, не только форма тела, но и строение кожи помогают рыбе легко разрезать воду и быстро, без трения, скользить вперед. (Проведите также пальцем вдоль жаберных крышек и вдоль плавников спереди назад и обратно. Чувствуется ли разница?) Оторвите пинцетом отдельную чешуйку и рассмотрите ее: она разрасталась вместе с ростом рыбы, и на просвете вы увидите ряд концентрических линий, напоминающих годичные кольца на срезе дерева. У многих рыб, например у карпа, по числу наросших концентрических полос можно определить возраст чешуи, а вместе с тем и возраст самой рыбы.

Боковая линия . По бокам тела с каждой стороны тянется продольная полоска, так называемая боковая линия. Расположенные здесь чешуи пронизаны отверстиями, которые ведут вглубь кожи. Под ними тянется канал; он продолжается и на голове и разветвляется там вокруг глаз и рта. В стенках этого канала были обнаружены окончания нервов, а опыты, произведенные над щукой, показали, что рыба с поврежденными боковыми каналами не реагирует на движение воды, ударяющей в ее тело, т. е. не замечает речного течения, а в темноте натыкается на твердые предметы, которые встречаются ей на пути (нормальная рыба чувствует их близость по давлению воды, отталкивающейся от встреченного препятствия). Такой орган имеет для рыбы значение прежде всего при плавании ночью или при движении в мутной воде, когда рыба не может руководствоваться зрением. При помощи бокового канала рыба, вероятно, может определить силу течений. Если бы она ее не чувствовала и не сопротивлялась ей, то не смогла бы удержаться в проточной воде, и тогда все рыбы из рек и речек были бы снесены течением в море. Рассмотрите в лупу чешуйки боковой линии и сравните их с обыкновенной чешуей.

Что еще можно заметить на теле рыбы? Рассматривая рыбу с брюшной стороны, вы увидите ближе к хвосту более темное (желтое или красноватое) пятнышко, указывающее на место, где находится анальное отверстие, которым оканчивается кишечник. Непосредственно за ним идут еще два отверстия - половое и мочевое; через половое отверстие самки выпускают из тела икру (яйца), а самцы - молоки - семенную жидкость, которой они обливают отложенную самками икру и оплодотворяют ее. Через маленькое мочевое отверстие выбрасываются жидкие отбросы - моча, выделяемая почками.

Литература: Яхонтов А. А. Зоология для учителя: Хордовые/Под ред. А. В. Михеева. - 2-е изд. - М.: Просвещение, 1985. - 448 с., ил.

Какой слух у рыб? и Как работает у рыб орган слуха?

Во время рыбалки рыба может и не видеть нас, но слух у неё отличный, и она услышит малейший звук который мы издадим. Органы слуха у рыб: внутреннее ухо и боковая линия.

Слуховой аппарат карпа

Вода является хорошим проводником звуковых вибраций, и неуклюжий рыболов в состоянии запросто вспугнуть рыбу. Например хлопок при закрытии двери автомобиля, через водную среду распространяется на многие сотни метров. Изрядно нашумев, нечего удивляться почему слабый клев, а может и вообще отсутствует. Особенно осторожна крупная рыба, которая соответственно и является главной целью рыбной ловли.

Пресноводных рыб можно разделить на две группы:

Рыбы у которых отличный слух (карповые, плотва, линь)
Рыбы у которых средний слух (щука, окунь)

Как слышат рыбы?

Отличный слух достигается за счет того, что внутреннее ухо соединено с плавательным пузырем. При этом внешние вибрации усиливаются пузырем, который играет роль резонатора. И от него поступают к внутреннему уху.
Средний человек воспринимает на слух диапазон звука от 20 Гц до 20 кГц. А рыба, например карп, с помощью своих органов слуха, в состостоянии услышать звук от 5 Гц до 2 кГц. То есть слух у рыб настроен лучше на низкие вибрации, а высокие воспринимаются хуже. Любой неосторожный шаг на берегу, удар, шорох, отлично улавливается на слух карпом или плотвой.
Слуховой аппарат карпаУ хищный пресноводных органы слуха построены по другому, у таких рыб нет связи между внутренним ухом и плавательным пузырем.
Такие рыбы как щука, окунь, судак больше полагаются на зрение чем на слух, и не слышат звук выше 500 герц.
Даже шум лодочных моторов в значительной степени влияет на поведение рыб. Особенно на тех, у которых отличный слух. От излишнего шума, рыба может перестать кормится и даже прервать нерест. Мы уже память рыбы неплохая, и они хорошо запоминают звуки и ассоциируют их с событиями.
Исследование показали, что когда из-за шума карп переставал кормится, щука продолжала охотится, не обращая никакого внимание на происходящее.

Слуховой аппарат рыб

Органы слуха у рыб.

Позади черепа у рыбы находятся пара ушей, которые как и внутреннее ухо у человека, помимо функции слуха отвечают и за равновесие. Но в отличии от нас, у рыб ухо не имеет выхода наружу.
Боковая линия улавливает звук низкой частоты и движение воды рядом с рыбой. Жировые сенсоры, находящиеся под боковой линией, отчетливо передают внешнюю вибрацию воды на нейроны, и далее информация идет в мозг.
Имея две боковые линии и два внутренних уха, орган слуха у рыб отлично определяет направление звука. Небольшая задержка в показаниях этих органов, обрабатывается мозгом, и он определяет с какой стороны доносится вибрация.
Конечно на современных реках, озерах и ставках шума хватает. И слух рыбы со временем привыкает ко многим шумам. Но одно дело регулярно повторяющиеся звуки, даже если это шум поезда, а другое дело незнакомые вибрации. Так что для нормальной рыбалки обязательным будет соблюдение тишины, и понимание того как работает слух у рыб.

Эта статья была автоматически добавлена из сообщества

Поговорка «нем как рыба», с научной точки зрения давно утратило свою актуальность. Доказано, что рыбы умеют не только сами издавать звуки, но и слышать их. В течение долгого времени велись споры вокруг того, слышат ли рыбы. Сейчас ответ ученых известен и однозначен – рыбы не только обладают способностью слышать и имеют для этого соответствующие органы, но и сами посредством звуков в том числе могут между собой общаться.

Немного теории о сущности звука

Физиками давно установлено, что звук является ни чем иным, как цепочкой регулярно повторяющихся волн сжатия среды (воздушной, жидкой, твердой). Иначе говоря, звуки в воде являются столь же естественными, что и на ее поверхности. В воде звуковые волны, скорость которых обусловлена силой сжатия, могут распространяться различной частотой:

  • большинство рыб воспринимает звуковые частоты в диапазоне 50-3000 Гц,
  • вибрации и инфразвук, относящие к низкочастотным колебаниям до 16 Гц, воспринимают не все рыбы,
  • способны ли рыбы воспринимать ультразвуковые волны, частота которых превышает 20000 Гц) – этот вопрос до конца еще не изучен, поэтому убедительные доказательства относительно наличия у подводных обитателей такой способности не получены.

Известно, что в воде звук распространяется вчетверо быстрее, нежели в воздухе или другой газообразной среде. Это – причина того, что звуки, которые поступают в воду извне, рыбы получают в искаженном виде. По сравнению с обитателями суши у рыб слух не столь острый. Однако эксперименты зоологов выявили очень интересные факты: в частности, некоторые виды раб умеют различать даже полутона.

Более подробно о боковой линии

Этот орган у рыб ученые относят к древнейшим сенсорным образованиям. Его можно считать универсальным, поскольку он выполняет не одну, а сразу несколько функций, обеспечивающих нормальную жизнедеятельность рыб.

Морфология латеральной системы не одинакова у всех видов рыб. Существуют ее варианты:

  1. Уже само расположение боковой линии на корпусе рыбы может относиться к специфичному признаку вида,
  2. Кроме того, известны виды рыб с двумя и более латеральными линиями по обеим сторонам,
  3. У костистых рыб боковая линия, как правило, проходит вдоль тела. У одних она непрерывная, у других – прерывистая и похожа на пунктир,
  4. У одних видов каналы латеральной линии спрятаны внутри кожи либо проходят открыто по поверхности.

Во всем остальном строение этого сенсорного органа у рыб идентично и функционирует он у всех видов рыб одинаково.

Этот орган реагирует не только на сжатие воды, но и на иные раздражители: электромагнитные, химические. Главную роль в этом играют невромасты, состоящие из, так называемых, волосковых клеток. Сама же структура невромастов это – капсула (слизистая часть), в которую и погружены собственно волоски чувствительных клеток. Поскольку сами невромасты закрыты, с внешней средой они соединены через микроотверстия в чешуе. Как мы знаем, невромасты бывают и открытым. Эти характерны для тех видов рыб, у которых каналов боковой линии заходят на голову.

В ходе многочисленных опытов, проводимых ихтиологами в разных странах было доподлинно установлено, что латеральная линия воспринимает низкочастотные колебания, причем, не только звуковые, но волны от движения других рыб.

Как органы слуха предупреждают рыб об опасности

В живой природе, как, в прочем, и в домашнем аквариуме, рыбы предпринимают адекватные меры, заслышав самые отдаленные звуки опасности. Пока шторм в этом районе моря или океана еще только зарождается, рыбы загодя меняют свое поведение – одни виды, опускаются на дно, где колебания волн наименьшие; другие мигрирую в спокойные локации.

Нехарактерные колебания воды расцениваются обитателями морей, как приближающаяся опасности и не отреагировать на нее они не могут, поскольку инстинкт самосохранения свойствен всему живому на нашей планете.

В реках поведенческие реакции рыб могут быть иными. В частности, при малейшем волнении воды (от лодки, например) рыба перестает есть. Это спасает ее от риска попасть на крючок к рыбаку.

«Ты мне тут не шуми, а то всю рыбу распугаешь» - сколько раз мы слышали подобную фразу. И многие рыбаки-новички до сих пор наивно полагают, что такие слова говорятся исключительно из строгости, желания помолчать, суеверий. Думают они примерно так: рыба же плавает в воде, что она там может услышать? Оказывается, очень даже многое, не нужно на этот счет заблуждаться. Чтобы прояснить ситуацию, мы хотим рассказать, какой слух у рыб и почему их можно запросто спугнуть какими-то резкими или громкими звуками.

Глубоко заблуждаются те, кто думает, что карпы, лещи, сазаны и прочие обитатели акваторий практически глухи. У рыб отличный слух - и благодаря развитым органам (внутреннему уху и боковой линии), и за счет того, что вода хорошо проводит звуковые вибрации. Так что шуметь во время фидерной ловли действительно не стоит. Но вот насколько хорошо слышит рыба? Так же, как мы, лучше или хуже? Давайте рассмотрим этот вопрос.

Насколько хорошо слышит рыба

В качестве примера возьмем всеми нами любимого карпа: он слышит звуки в диапазоне 5 Гц - 2 кГц . Это низкие вибрации. Для сравнения: мы, люди, в еще не старом возрасте слышим звуки в диапазоне 20 Гц - 20 кГц. Наш порог восприятия начинается с более высоких частот.

Так что в каком-то смысле рыбы слышат даже лучше нас, но до определенного предела. Например, они замечательно улавливают шорохи, удары, хлопки, поэтому важно не шуметь.

Рыб по слуху можно условно разделить на 2 группы:

    отлично слышат - это осторожные карповые, линь, плотва

    хорошо слышат - это более смелые окуни и щуки

Как видите, глухих нет. Так что хлопать дверцей автомобиля, включать музыку, громко переговариваться с соседями у места ловли категорически противопоказано. Этот и подобный ему шум может свести к нулю даже хороший клев.

Какие органы слуха есть у рыб

    В задней части головы у рыбы расположена пара внутренних ушей , отвечающих за слух и чувство равновесия. Обратите внимание, выхода наружу у этих органов нет.

    По корпусу рыбы, с обеих сторон, проходят боковые линии - своеобразные улавливатели движения воды и звуков низкой частоты. Подобные вибрации фиксируются жировыми сенсорами.

Как работают органы слуха у рыб

Боковыми линиями рыба определяет направление звука, внутренними ушами - частоту. После чего передает все эти внешние вибрации с помощью жировых сенсоров, расположенных под боковыми линиями, - по нейронам в мозг. Как видите, работа органов слуха организована до смешного просто.

При этом внутреннее ухо у не хищных рыб соединено со своего рода резонатором - с плавательным пузырем. Он первым принимает все внешние вибрации и усиливает их. И уже эти, повышенной мощности, звуки поступают ко внутреннему уху, а от него и к мозгу. За счет такого резонатора карповые и слышат вибрации частотой до 2 кГц.

А вот у хищных рыб внутренние уши не связаны с плавательным пузырем. Поэтому щуки, судаки, окуни слышат звуки примерно до 500 Гц. Впрочем, даже такой частоты им хватает, тем более что у них лучше развито зрение, чем у не хищных рыб.

В заключение хотим сказать, что к постоянно повторяющимся звукам обитатели акватории привыкают. Так что даже шум лодочного мотора, в принципе, может и не напугать рыбу, если по водоему часто плавают. Другое дело - незнакомые, новые звуки, тем более резкие, громкие, продолжительные. Из-за них рыба даже может перестать кормиться, даже если вы смогли подобрать хорошую прикормку, или нереститься, и как показывает практика, чем острее у нее слух, тем скорее и раньше это произойдет.

Вывод один и он прост: на рыбалке не шумите, о чем мы уже неоднократно писали в этой статье. Если не пренебрегать этим правилом и соблюдать тишину, шансы на хороший клев останутся максимальными.



Новое на сайте

>

Самое популярное