Домой Налет на языке Решение перельмана гипотезы пуанкаре. Миллион долларов за дырку от бублика

Решение перельмана гипотезы пуанкаре. Миллион долларов за дырку от бублика

В чём суть теоремы Пуанкаре

  1. Е доказала РАЖАЯ Софья вот а тоже РЫЖАЯ....
  2. Суть в том, что Вселенная имеет не форму сферы, а бублика
  3. Cмысл гипотезы Пуанкаре в ее изначальной формулировке состоит в том, что для любого трехмерного тела без отверстий найдется такое преобразование, которое позволит его без разрезания и склеивания превратить в шар. Если это кажется очевидным, то что, если пространство не трехмерное, а содержит десять или одиннадцать измерений (то есть речь идет об обобщенной формулировке гипотезы Пуанкаре, которую и доказал Перельман)
  4. в 2-х словах не расскажешь
  5. В 1900 году Пуанкаре сделал предположение, что трхмерное многообразие со всеми группами гомологий как у сферы гомеоморфно сфере. В 1904 году он же нашл контр-пример, называемый теперь сферой Пуанкаре, и сформулировал окончательный вариант своей гипотезы. Попытки доказать гипотезу Пуанкаре привели к многочисленным продвижениям в топологии многообразий.

    Доказательства обобщнной гипотезы Пуанкаре для n #10878; 5 получены в начале 19601970-х почти одновременно Смейлом, независимо и другими методами Столлингсом (англ.) (для n #10878; 7, его доказательство было распространено на случаи n = 5 и 6 Зееманом (англ.)) . Доказательство значительно более трудного случая n = 4 было получено только в 1982 году Фридманом. Из теоремы Новикова о топологической инвариантности характеристических классов Понтрягина следует, что существуют гомотопически эквивалентные, но не гомеоморфные многообразия в высоких размерностях.

    Доказательство исходной гипотезы Пуанкаре (и более общей гипотезы Трстона) было найдено только в 2002 году Григорием Перельманом. Впоследствии доказательство Перельмана было проверено и представлено в разврнутом виде как минимум тремя группами учных. 1 Доказательство использует поток Риччи с хирургией и во многом следует плану, намеченному Гамильтоном, который также первым применил поток Риччи.

  6. хто это такой
  7. Теорема Пуанкаре:
    Теорема Пуанкаре о векторном поле
    Теорема Пуанкаре Бендиксона
    Теорема Пуанкаре о классификации гомеоморфизмов окружности
    Гипотеза Пуанкаре о гомотопической сфере
    Теорема Пуанкаре о возвращении

    Вы о какой спрашиваете?

  8. В теории динамических систем, теорема Пуанкаре о классификации гомеоморфизмов окружности описывает возможные типы обратимой динамики на окружности, в зависимости от числа вращения p(f) итерируемого отображения f. Грубо говоря, оказывается, что динамика итераций отображения в определнной степени похожа на динамику поворота на соответствующий угол.
    А именно, пусть задан гомеоморфизм окружности f. Тогда:
    1) Число вращения рационально тогда и только тогда, когда у f есть периодические точки. При этом знаменатель числа вращения это период любой периодической точки, а циклический порядок на окружности точек любой периодической орбиты такой же, как и у точек орбиты поворота на p(f). Далее, любая траектория стремится к некоторой периодической как в прямом, так и в обратном времени (a- и -w предельные траектории при этом могут быть разными) .
    2) Если число вращения f иррационально, то возможны два варианта:
    i) либо у f есть плотная орбита, и тогда гомеоморфизм f сопряжн повороту на p(f). В этом случае все орбиты f плотны (поскольку это верно для иррационального поворота) ;
    ii) либо у f есть канторово инвариантное множество C, являющееся единственным минимальным множеством системы. В этом случае все траектории стремятся к C как в прямом, так и в обратном времени. Кроме того, отображение f полусопряжено повороту на p(f): для некоторого отображения h степени 1, p o f =R p (f) o h

    При этом множество C в точности является множеством точек роста h иными словами, с топологической точки зрения, h схлопывает интервалы дополнения до C.

  9. суть вопроса - 1 млн долларов
  10. В том что ее не кто не понимает кроме 1 человека
  11. Во внешней политике Франции..
  12. Вот здесь Лка лучше всех ответила http://otvet.mail.ru/question/24963208/
  13. Гениальный математик, парижский профессор Анри Пуанкаре занимался самыми разными областями этой науки. Самостоятельно и независимо от работ Эйнштейна в 1905 году он выдвинул основные положения Специальной теории относительности. А свою знаменитую гипотезу он сформулировал еще в 1904 году, так что на ее решение потребовалось около столетия.

    Пуанкаре был одним из родоначальников топологии науке о свойствах геометрических фигур, которые не изменяются при деформациях, происходящих без разрывов. К примеру, воздушный шарик можно с легкостью деформировать в самые разные фигуры как это делают для детей в парке. Но потребуется разрезать шарик, чтобы скрутить из него бублик (или, говоря геометрическим языком, тор) другого способа не существует. И наоборот: возьмите резиновый бублик и попробуйте превратить его в сферу. Впрочем, все равно не выйдет. По своим топологическим свойствам поверхности сферы и тора несовместимы, или негомеоморфны. Зато любые поверхности без дырок (замкнутые поверхности) , наоборот, гомеоморфны и способны, деформируясь, переходить в сферу.

    Если насчет двумерных поверхностей сферы и тора все было решено еще в XIX веке, для более многомерных случаев потребовалось гораздо больше времени. В этом, собственно, и состоит суть гипотезы Пуанкаре, которая расширяет закономерность на многомерные случаи. Немного упрощая, гипотеза Пуанкаре гласит: Всякое односвязное замкнутое n-мерное многообразие гомеоморфно n-мерной сфере. Забавно, что вариант с трехмерными поверхностями оказался самым непростым. В 1960 году гипотеза была доказана для размерностей 5 и выше, в 1981 для n=4. Камнем преткновения стала именно трехмерность.

    Развивая идеи Вильяма Трстена и Ричарда Гамильтона, предложенные ими в 1980-х годах, Григорий Перельман применил к трехмерным поверхностям особое уравнение плавной эволюции. И сумел показать, что исходная трехмерная поверхность (если в ней нет разрывов) обязательно будет эволюционировать в трехмерную сферу (это поверхность четырехмерного шара, и существует она в 4-мерном пространстве) . По словам ряда специалистов, это была идея нового поколения, решение которой открывает новые горизонты для математической науки.

    Интересно, что сам Перельман отчего-то не потрудился довести свое решение до окончательного блеска. Описав решение в целом в препринте The entropy formula for the Ricci flow and its geometric applications в ноябре 2002 года, он в марте 2003 года дополнил доказательство и изложил его в препринте Ricci flow with surgery on three-manifolds, а также сообщил о методе в серии лекций, которые прочел в 2003 году по приглашениям ряда университетов. Ни один из рецензентов не смог обнаружить в предложенном им варианте ошибок, но и публикации в реферируемом научном издании Перельман не выпустил (а именно таковым, в частности было необходимое условие получения премии Математического института Клэя) . Зато в 2006 году на основе его метода вышел целый набор доказательств, в которых американские и китайские математики подробно и полностью рассматривают проблему, дополняют моменты, опущенные Перельманом, и выдают окончательное доказательство гипотезы Пуанкаре.

  14. Обобщнная гипотеза Пуанкаре утверждает, что:
    Для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.
    Исходная гипотеза Пуанкаре является частным случаем обобщнной гипотезы при n = 3.
    За расъяснениями - в лес по грибы, там ходит Григорий Перельман)
  15. Теорема Пуанкаре о возвращении одна из базовых теорем эргодической теории. Ее суть в том, что при сохраняющем меру отображении пространства на себя почти каждая точка вернется в свою начальную окрестность. Полная формулировка теоремы следующая 1:
    Пусть сохраняющее меру преобразование пространства с конечной мерой и пусть измеримое множество. Тогда для любого натурального
    .
    У данной теоремы есть неожиданное следствие: оказывается, если в сосуде, разделенном перегородкой на два отсека, один из которых заполнен газом, а другой пуст, удалить перегородку, то через некоторое время все молекулы газа вновь соберутся в исходной части сосуда. Разгадка этого парадокса в том, что некоторое время имеет порядок миллиардов лет.
  16. у него теорем как собак в корее резанных.. .

    вселенная имеет сферическую форму.. . http://ru.wikipedia.org/wiki/Пуанкаре, _Анри

    вот вчера учные объявили - что вселенная замороженная субстанция... и попросили много денег для доказательства этого... опять мерикосы станок включат печатный... для утехи яйцеголовых...

  17. Попробуй доказать, где верх и низ в невесомости.
  18. Вчера был прекрасный фильм по КУЛЬТУРе, в котором на пальцах объяснялась эта проблема. Может, он у них еще есть?

    http://video.yandex.ru/#search?text=РРР СР Р РРСРР СРРРРwhere=allfilmId=36766495-03-12
    Входите в Яндекс и пишете Фильм о Перельмане и выходите на фильм

Григорий Перельман. Отказник

Василий Максимов

В августе 2006 года были объявлены имена лучших математиков планеты, получивших престижнейшую Медаль Филдса – своеобразный аналог Нобелевской премии, которой математики, по прихоти Альфреда Нобеля, были лишены. Премия Fields Medal – помимо почетного знака, лауреатам вручается чек на пятнадцать тысяч канадских долларов – присуждается Международным конгрессом математиков раз в четыре года. Она учреждена канадским ученым Джоном Чарльзом Филдсом и впервые вручена в 1936 году. С 1950 года Fields Medal вручается регулярно лично королем Испании за вклад в развитие математической науки. Лауреатами премии могут стать от одного до четырех ученых в возрасте до сорока лет. Премию уже получили сорок четыре математика, среди которых восемь россиян.

Григорий Перельман. Анри Пуанкаре.

В 2006 году лауреатами стали француз Венделин Вернер, австралиец Теренс Тао и двое россиян – работающий в США Андрей Окуньков и ученый из Петербурга Григорий Перельман. Однако в последний момент стало известно, что Перельман отказался от этой престижной награды – как объявили организаторы, «по принципиальным соображениям».

Столь экстравагантный поступок российского математика не стал неожиданностью для знающих его людей. Он уже не в первый раз отказывается от математических наград, объясняя свое решение тем, что не любит торжественные мероприятия и излишнюю шумиху вокруг своего имени. Еще десять лет назад, в 1996 году, Перельман отказался от премии Европейского математического конгресса, сославшись на то, что не закончил работу над номинированной на награду научной проблемой, и это был не последний случай. Российский математик словно сделал целью своей жизни удивлять людей, идя наперекор общественному мнению и научной общественности.

Григорий Яковлевич Перельман родился 13 июня 1966 года в Ленинграде. С юных лет увлекался точными науками, с блеском окончил знаменитую 239-ю среднюю школу с углубленным изучением математики, побеждал на многочисленных математических олимпиадах: так, в 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Перельман без экзаменов был зачислен на мехмат Ленинградского университета, где учился на «отлично», продолжая побеждать в математических соревнованиях всех уровней. Окончив университет с красным дипломом, он поступил в аспирантуру при Петербургском отделении Математического института имени В. А. Стеклова. Его научным руководителем был известный математик академик Александров. Защитив кандидатскую диссертацию, Григорий Перельман остался в институте, в лаборатории геометрии и топологии. Известны его работы по теории пространств Александрова, он сумел найти доказательства к ряду важных гипотез. Несмотря на многочисленные предложения от ведущих западных университетов, Перельман предпочитает работать в России.

Самым громким его успехом стало решение в 2002 году знаменитой гипотезы Пуанкаре, опубликованной в 1904 году и с тех пор остававшейся не доказанной. Перельман работал над нею восемь лет. Гипотеза Пуанкаре считалась одной из величайших математических загадок, а ее решение – важнейшим достижением в математической науке: оно моментально продвинет вперед исследования проблем физико-математических основ мироздания. Виднейшие умы планеты прогнозировали ее решение лишь через несколько десятилетий, а Институт математики Клея в Кембридже, штат Массачусетс, внес проблему Пуанкаре в число семи наиболее интересных нерешенных математических проблем тысячелетия, за решение каждой из которых была обещана премия в миллион долларов (Millennium Prize Problems).

Гипотеза (иногда называемая задачей) французского математика Анри Пуанкаре (1854–1912) формулируется так: любое замкнутое односвязное трехмерное пространство гомеоморфно трехмерной сфере. Для пояснения используют наглядный пример: если обмотать яблоко резиновой лентой, то в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой бублик, то в точку его сжать нельзя без разрыва или бублика, или резины. В таком контексте яблоко называют «односвязной» фигурой, бублик же не односвязен. Почти сто лет назад Пуанкаре установил, что двумерная сфера односвязна, и предположил, что трехмерная сфера тоже односвязна. Доказать эту гипотезу не могли лучшие математики мира.

Чтобы претендовать на приз Института Клея, Перельману нужно было всего лишь опубликовать свое решение в одном из научных журналов, и если в течение двух лет никто не сможет найти ошибку в его вычислениях, то решение будут считать верным. Однако Перельман с самого начала отступил от правил, опубликовав свое решение на сайте препринтов Лос-Аламосской научной лаборатории. Возможно, он опасался того, что в его расчеты вкралась ошибка – подобная история уже происходила в математике. В 1994 году английский математик Эндрю Уайлз предложил решение знаменитой теоремы Ферма, а спустя несколько месяцев выяснилось, что в его расчеты вкралась ошибка (правда, впоследствии она была исправлена, и сенсация всё же состоялась). Официальной публикации доказательства гипотезы Пуанкаре нет до сих пор – зато есть авторитетное мнение лучших математиков планеты, подтверждающих верность расчетов Перельмана.

Медаль Филдса Григорию Перельману была присуждена именно за решение проблемы Пуанкаре. Но российский ученый отказался от премии, которой он без сомнения достоин. «Григорий сказал мне, что чувствует себя изолированным от международного математического сообщества, вне этого сообщества, поэтому не хочет получать награду», – заявил на пресс-конференции в Мадриде президент Всемирного союза математиков (ВСМ) англичанин Джон Болл.

Ходят слухи, что Григорий Перельман и вовсе собирается уйти из науки: еще полгода назад он уволился из родного Математического института имени Стеклова, и говорят, будто он не будет больше заниматься математикой. Возможно, российский ученый считает, что, доказав знаменитую гипотезу, он сделал для науки всё, что мог. А впрочем, кто возьмется рассуждать о ходе мыслей столь яркого ученого и неординарного человека?.. От любых комментариев Перельман отказывается, а газете The Daily Telegraph он заявил: «Ничто из того, что я могу сказать, не представляет ни малейшего общественного интереса». Однако ведущие научные издания были единодушны в своих оценках, когда сообщили, что «Григорий Перельман, разрешив теорему Пуанкаре, встал в один ряд с величайшими гениями прошлого и настоящего».

Ежемесячный литературно-публицистический журнал и издательство.

Ученые считают, что 38-летний российский математик Григорий Перельман предложил верное решение проблемы Пуанкаре. Об этом на научном фестивале в Эксетере (Великобритания) заявил профессор математики Стэнфордского университета Кит Девлин.

Проблема (ее также называют задачей или гипотезой) Пуанкаре относится к числу семи важнейших математических проблем, за решение каждой из которых назначил премию в один миллион долларов. Именно это и привлекло столь широкое внимание к результатам, полученным Григорием Перельманом, сотрудником лаборатории математической физики .

Ученые всего мира узнали о достижениях Перельмана из двух препринтов (статей, предваряющих полноценную научную публикацию), размещенных автором в ноябре 2002-го и марте 2003 года на сайте архива предварительных работ Лос-Аламосской научной лаборатории .

Согласно правилам, принятым Научным консультативным советом института Клэя, новая гипотеза должна быть опубликована в специализированном журнале, имеющем "международную репутацию". Кроме того, по правилам Института, решение о выплате приза принимает, в конечном счёте, "математическое сообщество": доказательство не должно быть опровергнуто в течение двух лет после публикации. Проверкой каждого доказательства занимаются математики в разных странах мира.

Проблема Пуанкаре

Родился 13 июня 1966 года в Ленинграде, в семье служащих. Окончил знаменитую среднюю школу № 239 с углубленным изучением математики. В 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Был без экзаменов зачислен на матмех Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Получал Ленинскую стипендию. Окончив университет, Перельман поступил в аспирантуру при Санкт-Петербургском отделении Математического института им.В.А.Стеклова. Кандидат физико-математических наук. Работает в лаборатории математической физики.

Проблема Пуанкаре относится к области так называемой топологии многообразий - особым образом устроенных пространств, имеющих разную размерность. Двухмерные многообразия можно наглядно представить себе, например, на примере поверхности трехмерных тел - сферы (поверхности шара) или тора (поверхности бублика).

Легко вообразить, что произойдет с воздушным шариком, если его деформировать (изгибать, скручивать, тянуть, сжимать, пережимать, сдувать или надувать). Ясно, что при всех вышеперечисленных деформациях шарик будет изменять свою форму в широких пределах. Однако мы никогда не сможем превратить шарик в бублик (или наоборот) без нарушения непрерывности его поверхности, то есть не разрывая. В этом случае топологи говорят, что сфера (шарик) негомеоморфна тору (бублику). Это означает, что данные поверхности невозможно отобразить одну на другую. Говоря простым языком, сфера и тор различны по своим топологическим свойствам. А поверхность воздушного шарика при всевозможных его деформациях гомеоморфна сфере, равно как поверхность спасательного круга - тору. Иными словами, любая замкнутая двумерная поверхность, не имеющая сквозных отверстий, обладает теми же топологическими свойствами, что и двухмерная сфера.

ТОПОЛОГИЯ, раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Непрерывная деформация - это деформация фигуры, при которой не происходит разрывов (т.е. нарушения целостности фигуры) или склеиваний (т.е. отождествления ее точек).
ТОПОЛОГИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ одной геометрической фигуры на другую - есть отображение произвольной точки Р первой фигуры на точку Р` другой фигуры, которое удовлетворяет следующим условиям: 1) каждой точке Р первой фигуры должна соответствовать одна и только одна точка Р` второй фигуры, и наоборот; 2) Отображение должно быть взаимно непрерывно. Например, имеются две точки Р и N, принадлежащие одной фигуре. Если при движении точки Р к точке N расстояние между ними стремится к нулю, то расстояние между точками Р` и N` другой фигуры тоже должно стремиться к нулю, и наоборот.
ГОМЕОМОРФИЗМ. Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными. Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т.е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Область, в которой любую замкнутую простую (т.е. гомеоморфную окружности) кривую можно стянуть в точку, оставаясь все время в этой области, называется односвязной, а соответствующее свойство области - односвязностью. Если же некоторую замкнутую простую кривую этой области нельзя стянуть в точку, оставаясь все время в этой области, то область называется многосвязной, а соответствующее свойство области - многосвязностью.

Проблема Пуанкаре утверждает то же самое для трехмерных многообразий (для двухмерных многообразий, таких как сфера, это положение было доказано еще в XIX веке). Как заметил французский математик, одно из важнейших свойств двухмерной сферы состоит в том, что любая замкнутая петля (например, лассо), лежащая на ней, может быть стянута в одну точку, не покидая при этом поверхности. Для тора это справедливо не всегда: петля, проходящая через его отверстие, стянется в точку либо при разломе тора, либо при разрыве самой петли. В 1904 году Пуанкаре высказал предположение, что если петля может стягиваться в точку на замкнутой трехмерной поверхности, то такая поверхность гомеоморфна трехмерной сфере. Доказательство этой гипотезы оказалось чрезвычайно сложной задачей.

Сразу уточним: упомянутая нами формулировка проблемы Пуанкаре говорит вовсе не о трехмерном шаре, который мы можем представить себе без особого труда, а о трехмерной сфере, то есть о поверхности четырехмерного шара, который представить себе уже гораздо труднее. Но в конце 1950-х годов неожиданно выяснилось, что с многообразиями высоких размерностей работать гораздо легче, чем с трех- и четырехмерными. Очевидно, отсутствие наглядности - далеко не главная трудность, с которой сталкиваются математики в своих исследованиях.

Задача, подобная проблеме Пуанкаре, для размерностей 5 и выше была решена в 1960 году Стивеном Смэйлом (Stephen Smale), Джоном Стэллингсом (John Stallings) и Эндрю Уоллесом (Andrew Wallace). Подходы, использованные этими учеными, оказались, однако, неприменимы к четырехмерным многообразиям. Для них проблема Пуанкаре была доказана лишь в 1981 году Майклом Фридманом (Michael Freedman). Трехмерный же случай оказался самым сложным; его решение и предлагает Григорий Перельман.

Необходимо отметить, что у Перельмана есть соперник. В апреле 2002 года профессор математики британского университета Саутгемптон Мартин Данвуди предложил свой метод решения проблемы Пуанкаре и теперь ожидает вердикт от института Клэя.

Специалисты считают, что решение проблемы Пуанкаре позволит сделать серьезный шаг в математическом описании физических процессов в сложных трехмерных объектах и даст новый импульс развитию компьютерной топологии. Метод, который предлагает Григорий Перельман, приведет к открытию нового направления в геометрии и топологии. Петербургский математик вполне может претендовать на премию Филдса (аналог Нобелевской премии, которую по математике не присуждают).

Между тем, некоторые находят поведение Григория Перельмана странным. Вот что пишет британская газета "Гардиан": "Скорее всего, подход Перельмана к разгадке проблемы Пуанкаре верный. Но не все так просто. Перельман не предоставляет доказательств того, что работа издана в качестве полноценной научной публикации (препринты таковой не считаются). А это необходимо, если человек хочет получить награду от института Клэя. Кроме того, он вообще не проявляет интереса к деньгам".

Видимо, для Григория Перельмана, как для настоящего ученого, деньги - не главное. За решение любой из так называемых "задач тысячелетия" истинный математик продаст душу дьяволу.

Список тысячелетия

8 августа 1900 года на международном математическом конгрессе в Париже математик Дэвид Гилберт (David Hilbert) изложил список проблем, которые, как он полагал, предстояло решить в ХХ веке. В списке было 23 пункта. Двадцать один из них на данный момент решены. Последней решенной проблемой из списка Гилберта была знаменитая теорема Ферма , с которой ученые не могли справиться в течение 358 лет. В 1994 году свое решение предложил британец Эндрю Уайлз. Оно и оказалось верным.

По примеру Гилберта в конце прошлого века многие математики пытались сформулировать подобные стратегические задачи на ХХI век. Один из таких списков приобрел широкую известность благодаря бостонскому миллиардеру Лэндону Клэю (Landon T. Clay). В 1998 году на его средства в Кембридже (Массачусетс, США) был основан и установлены премии за решение ряда важнейших проблем современной математики. 24 мая 2000 года эксперты института выбрали семь проблем - по числу миллионов долларов, выделенных на премии. Список получил название Millennium Prize Problems:

1. Проблема Кука (сформулирована в 1971 году)

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей. Это говорит о том, что решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения.

Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема также является одной из нерешенных задач из области логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

2. Гипотеза Римана (сформулирована в 1859 году)

Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например 2, 3, 5, 7 и так далее. Такие числа называются простыми и играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди ряда всех натуральных чисел не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

3. Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)

Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x 2 + y 2 = z 2 . Эвклид дал полное описание решений этого уравнения, но для более сложных уравнений поиск решений становится чрезвычайно трудным.

4. Гипотеза Ходжа (сформулирована в 1941 году)

В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые "кирпичики", которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких "кирпичиков" и объектов.

5. Уравнения Навье - Стокса (сформулированы в 1822 году)

Если плыть в лодке по озеру, то возникнут волны, а если лететь в самолете, в воздухе возникнут турбулентные потоки. Предполагается, что эти и другие явления описываются уравнениями, известными как уравнения Навье - Стокса. Решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Решение этой проблемы позволит существенно изменить способы проведения гидро- и аэродинамических расчетов.

6. Проблема Пуанкаре (сформулирована в 1904 году)

Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока односвязна, а поверхность бублика - нет. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики ищут правильный ответ до сих пор.

7. Уравнения Янга - Миллса (сформулированы в 1954 году)

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга - Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, поэтому теория Янга - Миллса принята большинством физиков несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.

Михаил Витебский

«Проблема, которую решил Перельман , состоит в требовании доказать гипотезу, выдвинутую в 1904 году великим французским математиком Анри Пуанкаре (1854-1912) и носящую его имя. О роли Пуанкаре в математике трудно сказать лучше, чем это сделано в энциклопедии: «Труды Пуанкаре в области математики, с одной стороны, завершают классическое направление, а с другой - открывают пути к развитию новой математики, где наряду с количественными соотношениями устанавливаются факты, имеющие качественный характер» (БСЭ, изд. 3-е, т. 2). Гипотеза Пуанкаре как раз и имеет качественный характер - как и вся та область математики (а именно топология), к которой она относится и в создании которой Пуанкаре принял решающее участие.

На современном языке гипотеза Пуанкаре звучит так: всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере.

В следующих абзацах мы постараемся хотя бы частично и очень приблизительно разъяснить смысл этой устрашающей словесной формулы. Для начала заметим, что обычная сфера, которая есть поверхность обычного шара, двумерна (а сам шар - тот трёхмерен). Двумерная сфера состоит из всех точек трёхмерного пространства, равноудалённых от некоторой выделенной точки, называемой центром и сфере не принадлежащей. Трёхмерная сфера состоит из всех точек четырёхмерного пространства, равноудалённых от своего центра (сфере не принадлежащего). В отличие от двумерных сфер трёхмерные сферы недоступны нашему непосредственному наблюдению, и нам представить себе их так же трудно, как Василию Ивановичу из известного анекдота квадратный трёхчлен. Не исключено, однако, что все мы как раз в трёхмерной сфере и находимся, то есть что наша Вселенная является трёхмерной сферой.

В этом состоит значение результата Перельмана для физики и астрономии. Термин «односвязное компактное трёхмерное многообразие без края» содержит указания на предполагаемые свойства нашей Вселенной. Термин «гомеоморфно» означает некую высокую степень сходства, в известном смысле неотличимость. Формулировка в целом означает, следовательно, что если наша Вселенная обладает всеми свойствами односвязного компактного трёхмерного многообразия без края, то она - в том же самом «известном смысле» - и есть трёхмерная сфера.

Понятие односвязности - довольно простое понятие. Представим себе канцелярскую резинку (то есть резиновую нить со склеенными концами) столь упругую, что она, если её не удерживать, стянется в точку. От нашей резинки мы потребуем ещё, чтобы при стягивании в точку она не выходила за пределы той поверхности, на которой мы её расположили. Если мы растянем такую резинку на плоскости и отпустим, она немедленно стянется в точку. То же произойдёт, если мы расположим резинку на поверхности глобуса, то есть на сфере. Для поверхности спасательного круга ситуация окажется совершенно иной: любезный читатель легко найдёт такие расположения резинки на этой поверхности, при которой стянуть резинку в точку, не выходя за пределы рассматриваемой поверхности, невозможно. Геометрическая фигура называется односвязной, если любой замкнутый контур, расположенный в пределах этой фигуры, можно стянуть в точку, не выходя за названные пределы. Мы только что убедились, что плоскость и сфера односвязны, а поверхность спасательного круга не односвязна. Не односвязна и плоскость с вырезанной в ней дырой. Понятие односвязности применимо и к трёхмерным фигурам. Так, куб и шар односвязны: всякий находящийся в их толще замкнутый контур можно стянуть в точку, причём в процессе стягивания контур будет всё время оставаться в этой толще. А вот баранка не односвязна: в ней можно найти такой контур, который нельзя стянуть в точку так, чтобы в процессе стягивания контур всё время находился в тесте баранки. Не односвязен и крендель. Можно доказать, что трёхмерная сфера односвязна.

Надеемся, что читатель не забыл, ещё разницу между отрезком и интервалом, которой обучают в школе. Отрезок имеет два конца, он состоит из этих концов и всех точек, расположенных между ними. Интервал же состоит только из всех точек, расположенных между его концами, сами же концы в состав интервала не входят: можно сказать, что интервал - это отрезок с удалёнными из него концами, а отрезок - это интервал с добавленными к нему концами. Интервал и отрезок являются простейшими примерами одномерных многообразий, причём интервал есть многообразие без края, а отрезок - многообразие с краем; край в случае отрезка состоит из двух концов. Главное свойство многообразий, лежащее в основе их определения, состоит в том, что в многообразии окрестности всех точек, за исключением точек края (которого может и не быть), устроены совершенно одинаково.

При этом окрестностью какой-либо точки А называется совокупность всех точек, расположенных вблизи от этой точки А. Микроскопическое существо, живущее в многообразии без края и способное видеть только ближайшие к себе точки этого многообразия, не в состоянии определить, в какой именно точке оно, существо, находится: вокруг себя оно всегда видит одно и то же. Ещё примеры одномерных многообразий без края: вся прямая линия целиком, окружность. Примером одномерной фигуры, не являющейся многообразием, может служить линия в форме буквы Т: здесь есть особая точка, окрестность которой не похожа на окрестности других точек - это точка, где сходятся три отрезка. Другой пример одномерного многообразия - линия в форме восьмёрки; в особой точке здесь сходятся четыре линии. Плоскость, сфера, поверхность спасательного круга служат примерами двумерных многообразии без края. Плоскость с вырезанной в ней дырой также будет многообразием - а вот с краем или без края, зависит от того, куда мы относим контур дыры. Если мы относим его к дыре, получаем многообразие без края; если оставляем контур на плоскости, получаем многообразие с краем, каковым и будет служить этот контур. Разумеется, мы имели здесь в виду идеальное математическое вырезание, а при реальном физическом вырезании ножницами вопрос, куда относится контур, не имеет никакого смысла.

Несколько слов о трёхмерных многообразиях. Шар вместе со сферой, служащей его поверхностью, представляет собою многообразие с краем; указанная сфера как раз и является этим краем. Если мы удалим этот шар из окружающего пространства, получим многообразие без края. Если мы сдерём с шара его поверхность, получится то, что на математическом жаргоне называется «ошкуренный шар», а в более научном языке - открытый шар. Если удалить открытый шар из окружающего пространства, получится многообразие с краем, и краем будет служить та самая сфера, которую мы содрали с шара. Баранка вместе со своей корочкой есть трёхмерное многообразие с краем, а если отодрать корочку (которую мы трактуем как бесконечно тонкую, то есть как поверхность), получим многообразие без края в виде «ошкуренной баранки». Всё пространство в целом, если понимать его так, как оно понимается в средней школе, есть трёхмерное многообразие без края.

Математическое понятие компактность отчасти отражает тот смысл, какой слово «компактный» имеет в повседневном русском языке: «тесный», «сжатый». Геометрическая фигура называется компактной, если при любом расположении бесконечного числа её точек они накапливаются к одной из точек или ко многим точкам этой же фигуры. Отрезок компактен: для любого бесконечного множества его точек в отрезке найдётся хотя бы одна так называемая предельная точка, любая окрестность которой содержит бесконечно много элементов рассматриваемого множества. Интервал не компактен: можно указать такое множество его точек, которое накапливается к его концу, и только к нему, - но ведь конец не принадлежит интервалу!

За недостатком места мы ограничимся этим комментарием. Скажем лишь, что из рассмотренных нами примеров компактными являются отрезок, окружность, сфера, поверхности баранки и кренделя, шар (вместе со своей сферой), баранка и крендель (вместе со своими корочками). Напротив, интервал, плоскость, ошкуренные шар, баранка и крендель не являются компактными. Среди трёхмерных компактных геометрических фигур без края простейшей является трёхмерная сфера, но в нашем привычном «школьном» пространстве такие фигуры не умещаются. Самое, пожалуй, глубокое из тех понятий, которые связывает между собой гипотеза Пуанкаре , - это понятие гомеоморфии. Гомеоморфия - это наиболее высокая ступень геометрической одинаковости . Сейчас мы попытаемся дать приблизительное разъяснение этому понятию путём постепенного к нему приближения.

Уже в школьной геометрии мы встречаемся с двумя видами одинаковости - с конгруэнтностью фигур и с их подобием. Напомним, что фигуры называются конгруэнтными, если они совпадают друг с другом при наложении. В школе конгруэнтные фигуры как бы не различают, и потому конгруэнтность называют равенством. Конгруэнтные фигуры имеют одинаковые размеры во всех своих деталях. Подобие же, не требуя одинаковости размеров, означает одинаковость пропорций этих размеров; поэтому подобие отражает более сущностное сходство фигур, нежели конгруэнтность. Геометрия в целом - более высокая ступень абстракции, нежели физика, а физика - чем материаловедение.

Возьмём, к примеру, шарик подшипника, биллиардный шар, крокетный шар и мяч. Физика не вникает в такие детали, как материал, из которого они сделаны, а интересуется лишь такими свойствами, как объём, вес, электропроводность и т. п. Для математики - все они шары, различающиеся только размерами. Если шары имеют разные размеры, то они различаются для метрической геометрии, но все они одинаковы для геометрии подобия. С точки зрения геометрии подобия одинаковы и все шары, и все кубы, а вот шар и куб - не одинаковы.

А теперь посмотрим на тор. Top - эта та геометрическая фигура, форму которой имеют баранка и спасательный круг. Энциклопедия определяет тор как фигуру, полученную вращением круга вокруг оси, расположенной вне этого круга. Призываем благосклонного читателя осознать, что шар и куб «более одинаковы» между собой, чем каждый из них с тором. Наполнить это интуитивное осознание точным смыслом позволяет следующий мысленный эксперимент. Представим себе шар сделанным из материала столь податливого, что его можно изгибать, растягивать, сжимать и, вообще, деформировать как угодно, - нельзя только ни разрывать, ни склеивать. Очевидно, что шар тогда можно превратить в куб, но вот в тор превратить невозможно. Толковый словарь Ушакова определяет крендель как выпечку (буквально: как сдобную витую булку) в форме буквы В. При всём уважении к этому замечательному словарю, слова «в форме цифры 8» кажутся мне более точными; впрочем, с той точки зрения, которая выражена в понятии гомеоморфии, и выпечка в форме цифры 8, и выпечка в форме буквы В, и выпечка в форме фиты имеют одну и ту же форму. Даже если предположить, что хлебопёки сумели получить тесто, обладающее вышеуказанными свойствами податливости, колобок невозможно - без разрывов и склеиваний! - превратить ни в баранку, ни в крендель, как и последние две выпечки друг в друга. А вот превратить шарообразный колобок в куб или в пирамиду - можно. Любезный читатель, несомненно, сумеет найти и такую возможную форму выпечки, в которую нельзя превратить ни колобок, ни крендель, ни баранку.

Не назвав этого понятия, мы уже познакомились с гомеоморфией. Две фигуры называются гомеоморфными, если одну можно превратить в другую путём непрерывной (т. е. без разрывов и склеивании) деформации; сами такие деформации называются гомеоморфизмами. Мы только что выяснили, что шар гомеоморфен кубу и пирамиде, но не гомеоморфен ни тору, ни кренделю, а последние два тела не гомеоморфны между собой. Просим читателя понимать, что мы привели лишь приблизительное описание понятия гомеоморфии, данное в терминах механического преобразования.

Коснёмся философского аспекта понятия гомеоморфии. Представим себе мыслящее существо, живущее внутри какой-либо геометрической фигуры и не обладающее возможностью посмотреть на эту фигуру извне, «со стороны». Для него фигура, в которой оно живёт, образует Вселенную. Представим себе также, что когда объемлющая фигура подвергается непрерывной деформации, существо деформируется вместе с нею. Если фигура, о которой идёт речь, является шаром, то существо никаким способом не может различить, пребывает ли оно в шаре, в кубе или в пирамиде. Однако для него не исключена возможность убедиться, что его Вселенная не имеет формы тора или кренделя. Вообще, существо может установить форму окружающего его пространства лишь с точностью до гомеоморфии, то есть оно не в состоянии отличить одну форму от другой, коль скоро эти формы гомеоморфны.

Для математики значение гипотезы Пуанкаре , превратившейся теперь из гипотезы в теорему Пуанкаре - Перельмана, огромно (не зря ведь за решение проблемы был предложен миллион долларов), равно как огромно и значение найденного Перельманом способа её доказательства, но объяснить это значение здесь - вне нашего умения. Что же касается космологической стороны дела, то, возможно, значимость этого аспекта была несколько преувеличена журналистами.

Впрочем, некоторые авторитетные специалисты заявляют, что осуществлённый Перельманом научный прорыв может помочь в исследовании процессов формирования чёрных дыр. Чёрные дыры, кстати, служат прямым опровержением положения о познаваемости мира - одного из центральных положений того самого передового, единственно верного и всесильного учения, которое 70 лет насильственно вдалбливалось в наши бедные головы. Ведь, как учит физика, никакие сигналы из этих дыр не могут к нам поступать в принципе, так что узнать, что там происходит, невозможно. О том, как устроена наша Вселенная в целом, мы вообще знаем очень мало, и сомнительно, что когда-нибудь узнаем. Да и сам смысл вопроса о её устройстве не вполне ясен. Не исключено, что этот вопрос относится к числу тех, на которые, согласно учению Будды , не существует ответа. Физика предлагает лишь модели устройства, более или менее согласующиеся с известными фактами. При этом физика, как правило, пользуется уже разработанными заготовками, предоставляемыми ей математикой.

Математика не претендует, разумеется, на то, чтобы установить какие бы то ни было геометрические свойства Вселенной. Но она позволяет осмыслить те свойства, которые открыты другими науками. Более того. Она позволяет сделать более понятными некоторые такие свойства, которые трудно себе вообразить, она объясняет, как такое может быть. К числу таких возможных (подчеркнём: всего лишь возможных!) свойств относятся конечность Вселенной и её неориентируемость.

Долгое время единственной мыслимой моделью геометрического строения Вселенной служило трёхмерное евклидово пространство, то есть то пространство, которое известно всем и каждому из средней школы. Это пространство бесконечно; казалось, что никакие другие представления и невозможны; помыслить о конечности Вселенной казалось безумием. Однако ныне представление о конечности Вселенной не менее законно, чем представление о её бесконечности. В частности, конечна трёхмерная сфера. От общения с физиками у меня осталось впечатление, что одни отвечают «скорее всего. Вселенная бесконечна», другие же - «скорее всего, Вселенная конечна».

Успенский В.А. , Апология математики, или о математике как части духовной культуры, журнал «Новый мир», 2007 г., N 12, с. 141-145.

Практически каждый человек, даже тот, кто не имеет никакого отношения к математике, слышал слова «гипотеза Пуанкаре», но не все могут объяснить, в чем ее суть. Для многих высшая математика кажется чем-то очень сложным и недоступным для понимания. Поэтому попробуем разобраться, что же означает гипотеза Пуанкаре простыми словами.

Содержание:

Что такое гипотеза Пуанкаре?

Формулировка гипотезы в оригинале звучит так: «Всякое компактное односвязное трехмерное многообразие без края гомеоморфно трёхмерной сфере ».

Шар – это геометрическое трехмерное тело, его поверхность называется сферой, она двумерна и состоит из точек трехмерного пространства, которые равноудалены от одной, не принадлежащей этой сфере, точки – центра шара. Кроме двумерных сфер, существуют еще трехмерные сферы, состоящие из множества точек четырехмерного пространства, которые так же равноудалены от одной, не принадлежащей сфере, точки – ее центра. Если двухмерные сферы мы можем увидеть собственными глазами, то трехмерные не подвластны нашему зрительному восприятию.



Поскольку мы не имеем возможности увидеть Вселенную, то можно предположить, что она и есть трехмерная сфера, в которой живет все человечество. В этом и состоит сущность гипотезы Пуанкаре. А именно то, что Вселенная имеет следующие свойства: трехмерность, бескрайность, односвязность, компактность. Понятие «гомеоморфность» в гипотезе означает высочайшую степень схожести, подобия, для случая со Вселенной – неотличимость.

Кто такой Пуанкаре?

Жюль Анри Пуанкаре – величайший математик, который родился в 1854 году во Франции. Его интересы не ограничивались только математической наукой, он изучал физику, механику, астрономию, философию. Был членом более 30 научных академий мира, в том числе Петербургской академии наук. Историки все времен и народов причисляют к величайшим математикам мира Давида Гильберта и Анри Пуанкаре. В 1904 году ученый издал знаменитую работу, которая содержала предположение, известное на сегодняшний день как «гипотеза Пуанкаре». Именно трехмерное пространство для математиков оказалось очень сложным для исследования, найти доказательства других случаев не составило труда. В течение около одного столетия доказывалась истинность этой теоремы.




В начале ХХІ века в Кембридже была учреждена премия в один миллион долл. США за решение этой научной задачи, которая входила в список проблем тысячелетия. Только российский математик из Санкт-Петербурга Григорий Перельман смог это сделать для трехмерной сферы. В 2006 году за это достижение ему была присвоена медаль Филдса, но он отказался от ее получения.

К заслугам в научной деятельности Пуанкаре можно отнести следующие достижения:

  • основание топологии (разработка теоретических основ различных явлений и процессов);
  • создание качественной теории дифференциальных уравнений;
  • разработка теории аморфных функций, которая стала основой специальной теории относительности;
  • выдвижение теоремы о возвращении;
  • разработка новейших, эффективнейших методов небесной механики.

Доказательство гипотезы

Односвязному трехмерному пространству присваиваются геометрические свойства, оно разделяется на метрические элементы, которые имеют расстояния между собой с образованием углов. Для упрощения берется в качестве образца одномерное многообразие, в котором на эвклидовой плоскости к гладкой замкнутой кривой проводятся в каждой точке касательные вектора, равные 1. При обходе кривой вектор поворачивается с определенной угловой скоростью, равной кривизне. Чем сильнее изгиб линии, тем больше кривизна. Кривизна имеет положительный наклон, если вектор скорости повернут в сторону внутренней части плоскости, которую делит линия, и отрицательный, если повернут вовне. В местах перегиба кривизна равна 0. Теперь каждой точке кривой назначается вектор, перпендикулярный вектору угловой скорости, а длиной равный величине кривизны. Он повернут внутрь, когда кривизна имеет положительный наклон, и вовне – когда отрицательный. Соответствующий вектор определяет направление и скорость, с которой движется каждая точка на плоскости. Если провести в любом месте замкнутую кривую, то при такой эволюции она превратится в окружность. Это справедливо для трехмерного пространства, что и требовалось доказать.




Пример: из воздушного шара при деформации без разрывов можно сделать разные фигуры. Но бублик сделать не получится, для этого его нужно только разрезать. И наоборот, имея бублик, никак не сделаешь цельный шар. Хотя из любой другой поверхности без разрывов при деформации можно получить сферу. Это свидетельствует о том, что эта поверхность гомеоморфна шару. Любой шар можно обвязать ниткой с одним узлом, с бубликом это сделать невозможно.

Шар – это самая простая трехмерная плоскость, которую можно деформировать и свернуть в точку и наоборот.

Важно! Гипотеза Пуанкаре утверждает эквивалентность замкнутого n-мерного многообразия n-мерной сфере в случае его гомеоморфности ей. Она стала отправной точкой в развитии теории о многомерных плоскостях.



Новое на сайте

>

Самое популярное