Домой Налет на языке С чем связана дифференцировка клеток многоклеточного организма. Дифференцировка

С чем связана дифференцировка клеток многоклеточного организма. Дифференцировка

Развитие одноклеточной зиготы в многоклеточный организм происходит в результате процессов роста и дифференцировки клеток. Рост представляет собой увеличение массы организма, происходящее в результате ассимиляции вещества. Он может быть связан с увеличением как размеров клетки, так и их числа; при этом исходные клетки извлекают из окружающей среды необходимые им вещества и используют их на увеличение своей массы или на построение новых подобных себе клеток. Так, зигота человека составляет примерно 110 бг, а новорожденный ребенок весит в среднем 3200г, т.е. за время внутриутробного развития происходит увеличение массы в миллиарды раз. С момента рождения и до достижения средних для взрослого человека размеров масса увеличивается еще в 20 раз.[ ...]

Дифференцировка представляет собой созидательный процесс направленного изменения, в результате которого из общих черт, присущих всем клеткам, возникают структуры и функции, свойственные тем или иным специализированным клеткам. Процесс дифференцировки сводится к приобретению (или утрате) различными клетками структурных или функциональных особенностей, в результате чего эти клетки становятся специализированными для различных видов активностей, свойственных живым организмам, и формируют соответствующие органы в организме. У человека, например, растущие клетки в результате последовательных изменений в процессе дифференцировки превращаются в различные клетки, из которых состоит человеческий организма клетка нервной, мышечной,пищеварительной, выделительной, сердечно-сосудистой, дыхательной и других систем.[ ...]

Установлено, что дифференцировка возникает не в результате утраты или добавления генетической информации. Дифференцировка - это не результат изменения генетической потенции клетки, а дифференциальное выражение этих потенций под влиянием среды, в которой находятся клетка и ее ядро. Дифференцировка клеток - это в сущности изменение состава клеточных белков - набора ферментов, и обусловлена она тем, что в разных клетках из общего количества генов функционируют разные наборы ген, определяющие синтез различных наборов белков. Избирательное выражение информации, закодированной в генах данной клетки, достигается путем активации или репрессии процесса транскрипции (считывания) этих генов, т.е. путем избирательного синтеза первичного продукта генов - РНК, содержащей ту информацию, которую следует передать в цитоплазму.[ ...]

У многоклеточных организмов, в отличие от одноклеточных, рост и дифференцировка одной клетки координированы с ростом и развитием других клеток, т.е. между разными клетками происходит обмен информацией. Таким образом, в этих организмах развитие зависит от интегрированного роста и дифференцировки всех клеток и именно такая интеграция обеспечивает гармоничное развитие организма как целого.[ ...]

В онтогенезе каждый организм проходит последовательные стадии развития: зародышевый (эмбриональный), послезародышевый и период развития взрослого организма. Каждый период онтогенеза для своего происхождения и завершения требует определенного комплекса условий. Формирование видовых особенностей организма (генотипа) заканчивается к наступлению половой зрелости, а развитие индивидуальных признаков (фенотипа) происходит до конца.[ ...]

Размножение клеток продолжается в течение всей жизни организма со скоростями, соответствующими его внутренним потребностям, а также в зависимости от условий его внутренней и внешней среды.[ ...]

Для растений характерен практически недетерминированный рост, характеризующийся непрерывным образованием новых клеток в определенных участках, за счет которых происходит рост корней и побегов в длину, а за счет камбия увеличивается толщина. У большинства животных рост детерминирован и после достижения пропорций, присущих взрослому организму, участки активного размножения клеток обеспечивают лишь замещение утраченных или погибших клеток, не увеличивая общего числа клеток, имеющихся в данном организме. В организме одни клетки в результате жизнедеятельности стареют и умирают, другие образуются вновь. Длительность существования различных клеток неодинакова: от нескольких дней для клеток эпидермиса (кожи) до сотен лет для клеток древесины.[ ...]

При дифференцировке, несмотря на сохранение всей наследственной информации, клетки утрачивают способность к делению. При этом чем больше специализирована клетка, тем труднее изменить (а иногда невозможно) направление ее дифференцировки, что определяется ограничениями, накладываемыми на нее организмом в целом.

Гаструляция и последующие стадии развития организмов сопровождаются процессами роста и дифференцировки клеток.

Рост - это увеличение общей массы и размеров организма в процессе развития. Он происходит на клеточном, тканевом, органном и организменном уровнях. Увеличение массы в целом организме отражает рост составляющих его структур.

Рост обеспечивается следующими механизмами:

Увеличением числа клеток;

Увеличением размера клеток;

Увеличением объема и массы неклеточного вещества.

Различают два типа роста: ограниченный и неограниченный. Неограниченный рост продолжается на протяжении всего онтогенеза (на протяжении жизни особи, до и после рождения), вплоть до смерти. Таким ростом обладают, например, рыбы. Многие позвоночные характеризуются ограниченным ростом, т.е. достаточно быстро выходят на плато своей биомассы.

Выделяют несколько типов роста клеток.

Ауксентичный - рост, идущий путем увеличения размеров клеток. Это редкий тип роста, наблюдающийся у животных с постоянным количеством клеток, таких, как коловратки, круглые черви, личинки насекомых. Рост отдельных клеток нередко связан с полиплоидизацией ядер.

Пролиферационный - рост, протекающий путем размножения клеток. Он известен в двух формах: мультипликативный и аккреционный.

Мультипликативный рост характеризуется тем, что обе клетки, возникшие от деления родоначальной клетки, снова вступают в деление. Мультипликативный рост очень эффективен и поэтому в чистом виде почти не встречается или очень быстро заканчивается (например, в эмбриональном периоде).

Аккреционный рост заключается в том, что после каждого последующего деления лишь одна из клеток снова делится, тогда как другая прекращает деление. Этот тип роста связан с разделением органа на камбиальную и дифференцированную зоны. Клетки переходят из первой зоны во вторую, сохраняя постоянные соотношения между размерами зон. Такой рост характерен для органов, где происходит обновление клеточного состава.

Пространственная организация роста сложна и закономерна. Именно с ней в значительной мере связана видовая специфичность формы. Это проявляется в виде аллометрического роста. Его биологический смысл состоит в том, что организму в ходе роста надо сохранить не геометрическое, а физическое подобие, т.е. не превышать определенных отношений между массой тела и размерами опорных и двигательных органов. Так как с ростом тела масса возрастает в третьей степени, а сечения костей во второй степени, то для того, чтобы организм не был раздавлен собственной тяжестью, кости должны расти в толщину непропорционально быстро.

Существует предел или лимит Хейфлика (англ. Hayflick limit) - граница количества делений соматических клеток, названа в честь её открывателя Леонарда Хейфлика. В 1961 году Хейфлик наблюдал, как клетки человека, делящиеся в клеточной культуре, умирают приблизительно после 50 делений и проявляют признаки старения при приближении к этой границе. Эта граница была найдена в культурах всех полностью дифференцированных клеток как человека, так и других многоклеточных организмов. Максимальное число делений различно в зависимости от типа клеток и ещё сильнее различается в зависимости от организма. Для большинства человеческих клеток предел Хейфлика составляет 52 деления.

Граница Хейфлика связана с сокращением размера теломер - участков ДНК на концах хромосом. Если клетка не имеет активной теломеразы, как у большинства соматических клеток, при каждом делении клетки размер теломер сокращается, т.к. ДНК-полимераза не способна реплицировать концы молекулы ДНК. Вследствие данного явления теломеры должны укорачиваться весьма медленно - по несколько (3-6) нуклеотидов за клеточный цикл, то есть за количество делений, соответствующее лимиту Хейфлика, они укоротятся всего на 150-300 нуклеотидов. В настоящее время предложена эпигенетическая теория старения, которая объясняет эрозию теломер прежде всего активностью клеточных рекомбиназ, активизирующихся в ответ на повреждения ДНК, вызванные, главным образом, возрастной дерепрессией мобильных элементов генома. Когда после определённого числа делений теломеры исчезают совсем, клетка замирает в определённой стадии клеточного цикла или запускает программу апоптоза - открытого во второй половине 20 века явления плавного разрушения клетки, проявляющегося в уменьшении размера клетки и минимизации количества вещества, попадающего в межклеточное пространство после её разрушения.

Важнейшей характеристикой роста является его дифференциальность . Это означает, что скорость роста неодинакова, во-первых, в различных участках организма и, во-вторых, на разных стадиях развития. Очевидно, что дифференциальный рост оказывает огром­ное влияние на морфогенез. Рост зародыша на разных стадиях сопровождается дифференцировкой клеток. Дифференцировка - это изменения в структуре клеток, связанные со специализацией их функций, и обусловленные активностью определенных генов. Дифференцировка клеток приводит к возникновению как морфологических, так и функциональных различий, обусловленных их специализацией. В процессе дифференцировки менее специализированная клетка становится более специализированной. Дифференцировка меняет функцию клетки, её размер, форму и метаболическую активность.

Различают 4 этапа дифференцировки.

1. Оотипическая дифференцировка на стадии зиготы представлена предположительными, презумптивными зачатками - участками оплодотворенной яйцеклетки.

2. Бластомерная дифференцировка на стадии бластулы заключается в появлении неодинаковых бластомеров (например, бластомеры крыши, дна краевых зон у некоторых животных).

3. Зачатковая дифференцировка на стадии ранней гаструлы. Возникают обособленные участки - зародышевые листки.

4. Гистогенетическая дифференцировка на стадии поздней гаструлы. В пределах одного листка появляются зачатки различных тканей (например, в сомитах мезодермы). Из тканей формируются зачатки органов и систем. В процессе гаструляции, дифференцировки зародышевых листков появляется осевой комплекс зачатков органов.

Возникновение новых структур и изме­нение их формы в ходе индивидуального развития организмов называется морфогенезом. Морфогенез, как рост и клеточная дифференцировка, относится к ациклическим процессам, т.е. не возвращающимся в прежнее состо­яние и по большей части необратимым. Главным свойством ацикли­ческих процессов является их пространственно-временная организа­ция. Морфогенез на надклеточном уровне начинается с гаструляции. У хордовых животных после гаструляции происходит закладка осевых органов. В этот период, как и во время гаструляции, морфологичес­кие перестройки охватывают весь зародыш. Следующие затем органогенезы представляют собой местные процессы. Внутри каждого из них происходит расчленение на новые дискретные (отдельные) зачатки. Так последовательно во времени и в пространстве проте­кает индивидуальное развитие, приводящее к формированию особи со сложным строением и значительно более богатой информацией, нежели генетическая информация зиготы.

Министерство образования РФ

Санкт-Петербургский технологический институт

Кафедра молекулярной биотехнологии

Реферат
Тема: Дифференцировка эмбриональных клеток

Выполнил: Шилов С.Д. гр.295 курс 3

С-Петербург

2003 г.

Введение ………………………………………………………………………………..3

Детерминация и дифференцировка….…………………………………………….3

Дробление яйцеклетки и образование бластулы ………………………………..4

Организационные центры развивающихся зародышей. Индукция …………..6

Химический аспект изучения и дифференциации клеток и тканей…………...8

Теория полей.. ……………………………………………………………………….10

Заключение …………………………………………………………………………...12

Список использованной литературы ……………………………………………..13

Приложение …………………………………………………………………………..14

Введение:

Организм любого многоклеточного животного можно рассматривать как клон клеток, образовавшихся из одной единственной клетки – оплодотворённого яйца. Поэтому клетки тела, как правило, генетически идентичны, но различаются по фенотипу: одни становятся мышечными клетками, другие – нейронами, третьи – клетками крови и т.д. В организме клетки разного типа расположены строго определённым упорядоченным образом, и благодаря этому тело обладает характерной формой. Все признаки организма определяются последовательностью нуклеотидов в геномной ДНК, которая воспроизводится в каждой клетке. Все клетки получают одни и те же генетические «инструкции», но интерпретируют их с должным учётом времени и обстоятельств – так, чтобы каждая клетка выполняла свою определённую специфическую функцию в многоклеточном сообществе.

Многоклеточные организмы часто бывают очень сложными, но их построение осуществляется при помощи весьма ограниченного набора различных форм клеточной активности. Клетки растут и делятся. Они отмирают, соединяются механически, создают силы, позволяющие им передвигаться и изменять свою форму, они дифференцируются, то есть начинают или прекращают синтез определённых веществ, кодируемых геномом, они выделяют в окружающую среду или образуют на своей поверхности вещества, влияющие на активность соседних клеток. В этом реферате я попытаюсь объяснить, каким образом реализация различных форм клеточной активности в нужное время и нужном месте приводят к образованию целостного организма.

Детерминация и дифференцировка:

Самые важные понятия в эспериментальной эмбриологии – понятия дифференциация и детерминации, отражающие основные явления преемственности, последовательности процессов развития организма. В онтогенезе непрерывно происходят процессы дифференциации, то есть появляются новые и новые изменения между разными участками зародыша, между клетками и тканями, возникают разные органы. По сравнению с исходной в развитии яйцеклеткой организм кажется необычайно сложным. Дифференцировка – это такое структурное, биохимическое или иное изменение развития организма, при котором относительно однородное превращается во всё более различное, касается ли это клеток (цитологическая дмференциация), тканей (гистологическая дифференциация) или органов и и организма в целом, идёт речь о морфологических или о физиологических изменениях. При выявлениии причинного механизма тех или иных дифференцировок употребляется термин детерминация. Детерминацированной называют часть зародыша с того момента, когда она несёт в себе специфические причины своего дальнейшего развития, когда она может развиваться путём самодифференцировке в соответствии со своим проспективным развитием. Согласно Б.И. Балинскому детерминацией надо называть устойчивость начавшихся процессов дифференциации, их тенденцию развиваться в намеченном направлении, не смотря на изменение условий, необратимость прошедших изменений.

Тело животного построено из сравнительно небольшого количества легкоразличимых типов клеток – примерно из 200. Различия между ними столь ясны потому что, в дополнение к многочисленным белкам, необходимым любой клетке организма, клетки разных типов синтезируют свой собственный набор специализировнных белков. В клетках эпидермиса образуется керотин, в эритроцитах – гемоглобин, в клетках кишечника – пищеварительные ферменты и т.д. Может возникнуть вопрос: не объясняется ли это просто тем, что клетки обладают разными наборами генов? Клетки хрусталика могли бы, например, утратить гены кератина, гемоглобина и тд, но сохранить гены кристаллинов; или же в них могло бы избирательно увеличиваться число копий кристаллиновых генов путём аплификаций. Однако это не так, целый ряд исследований показывает что клетки почти всех типов содержат один и тот же полный геном, который был в оплодотворённом яйце. По-видимому, клетки различаются не потому что содержат различные гены, а потому что они экспрессируют разные гены. Активность генов подвержена регуляции: они могут включаться и выключаться.

Наболее убедительные данные от том, что несмотря на видимое изменение клеток при их дифференцировке, сам геном остаётся у них неизменным, были полученны в опытах с пересадкой ядер в яйца амфибий. Ядро яйца предварительно разрушают, облучая ультрафиолетом, и микропипеткой пересаживают ядро дифференцированной клетки, например, из кишечника, в оплодотворённое яйцо. Таким образом можно проверить, содержит ли ядро дифференцированной клетки полный геном, равноценный геному оплодотворённого яйца и способный обеспечить нормальное развитие зародыша. Ответ оказался положительным; в этих опытах удавалось вырастить нормальную лягушку, способную производить потомство.

Дробление яйцеклетки и образование бластулы:

Многими путями происходила эволюция животных. Очень разнообразны и специфичны связи развивающихся организмов со средой. Несмотря на это и несмотря на большие особенности в морфологии и физиологии дробления у разных видов животных, дробление яйцеклетки у большинства организмов совершается сходным периодом развития, именуемым бластулой (от греческого blaste, blastos – росток, зачаток). Это один из многочисленных показателей общности происхождения животного мира и один из примеров параллелизма в эволюционном развитии структур. Но это не значит, что зародыши всех животных совершенно одинаково устроены на стадии бластулы; наоборот, наряду с основными общими чертами имеются и существенные различия бластул разных животных. В зависимотси от многих причин дробящееся яйцо в общем сохраняет свою первоначальную сферическую форму, а бластомеры могут оказывать очень большое давление друг на друга, приобретать многогранную форму и не оставлять между собой никаких щелей; при этом образуется морула – совокупность делящихся клеток, напоминающая ежевичную ягоду с большей или меньшей полостью внутри, заполненной продуктами жизнедеятельности клеток. (рис. 1) Эта полость называется полостью дробления или в честь учёного Бэра в первые её описавшей – бэровской полостью. По мере деления клеток полость постепенно увеличивается и превращаяется в полость бластулы, называемой бластоцелием. Клетки ограничивающие бластоцелий образуют эпителиальный слой.

рис.1

После того как клетки бластулы сформировали эпителиальный слой, наступает время для координированных движений – гаструляции. Эта радикальная перестройка ведёт к превращению полого клеточного шарика в многослойную структуру, обладающую центральной осью и двусторонней симметрией. По мере развития у животного должны определиться передний и задний концы тела, брюшная и спинная стороны и серединная плоскость симметрии, разделяющая тело на правую и левую половины. Такая полярность складывается на очень ранней стадии развития зародыша. В результате сложного процесса инвагинации (впячивания) (рис.1) значительный участок эпителия перемещается с наружной поверхности внутрь зародыша, образуя первичную кишку. Последующее развитие будет определяться взаимодействиями внутреннего, наружного и среднего слоёв, создающихся при гаструляции. После процесса гаструляции наступает процесс органогенеза – это локальное изменение определённых участков того или иного зародышевых пластов, и образование зачатка. При этом подчас невозможно выделить какой-то главенсьвующий вид клеточного материала, от которого бы зависел механизм развития органа.

Организационные центры развивающихся зародышей. Индукция.

В своих пытах Шпеман срезал у зародыша тритона на стадии ранней гаструлы всю верхнюю половину (анимальное полушарие) и переворачивал её на 180° и снова сращивал. В результате образовывалась нервная пластинка на том же месте где и должна была быть, но не из нормального клеточного материала, а из эктодермального слоя. Шпеман решил, что в этом районе распространяется какое-то влияние, которое заставляет клетки эктодермального слоя развиваться по пути развития нервной пластинки, то есть индуцирует её образование. Эту область он назвал организационным центром, а сам материал, из которого исходит влияние – организатором или индукторм. В дальнейшем Шпеман пересаживал так называемые индукторы в разные участки других зародышей на стадии бластулы или ранней гаструлы. В не зависимости от места у зародыша индуцировалась вторичная нервная пластинка со всеми атрибутами, но не из трансплантата, а из клеток хозяина, сам же трансплантат в большинстве случаев двигался по пути своего нормального развития. Для анализа данных явлений в 1938 году Гольтфетер культивировал с стандартных средах маленькие кусочки, вырезанные из гаструлы тритонов. Оказалось что кусочки, вырезанные из разных областей зародыша, то есть в разной степени детерминированные, в зависимости от этого или распадаются на различные отдельные клетки (менее детерминированные), или могут формировать различные тканевые структуры (более локально детерминированные). Эти структуры, выражаясь языком школы Шпемана, развивались в отсутствии организатора.

В полне убедительный вывод из этих фактов сделали в 1955 году Ж.Гольтфретер и В.Гамбургер: все участки краевой зоны продуцируют в условиях эксплантации более широкое разнообразие тканей, чем они дали бы, находясь в системе зародыша. Позже эти учёные анализируя данные опытов сделали очень важный вывод, что неправильно было бы рассматривать поля и организаторы как верховную власть в определении судьбы других менее специфически детерминированных частей зародыша. Ценные результаты многочисленных опытов и исследований школы Шпемана и его последователей из других лабораторий, давших эмбриологии блестящие доказательства взаимозависимости частей зародыша, его интеграции на любой стадии развития, стали трактоваться всё более односторонне, как действие организаторов на якобы индиференцированный клеточный материал. Эта была полоса в развитии эмбриологии, когда казалось было найдено основное объяснение процессов формообразования и критические замечания отдельных учёных против односторонних увлечений, рассматривалось кк что-то мешающее развитию науки. Созданная в то время теория организационных центров, несомненно, содержала в себе односторонние и даже фанатичные вгляды, котороые потерпели поражение перед лицом новых, не менее увлекательных фактов, обнаруженных впоследствии самой же шпемановской школой.

Перед исследователями встал вопрос: сколь специфично действие организаторов, индукторов? При пересадке организатора от бесхвостой амфибии (лягушка-жерлянка)

Зародышу хвостатой амфибии (тритон) была обнаружена индукция медулярной пластинки. В случае пересадки от зародыша птицы в зародыш тритона организатор так же оказывает индуцирующее действие. Подобное явление происходит и в случае пересадки зародышу кролика организатора тритона. Возникли и другие вопросы. Одинаковы ли по своей природе организаторы у разных животных? Зависят ли индуцирующее свойства организатора от клеток, его составляющих, специфической диференцировки, типа связей между клетками – словом от биологической системы организатора или речь идёт о каком-то ином механизме? В 1931 году было обнаружено, что организатор способен индуцировать и после полного разрушения его структуры, даже полного разрушения его клеток. Перемешивали раздавленные кусочки эмбриона, делали комочки из них и пересаживали в полость бластулы другого зародыша. Индукция имела место. В 1932 году появилось сообщение о так называемых мёртвых организаторах. Группа учёных исследовала действие убитых организаторов, для чего клетки высушивали при 120 градусах, кипятили, замораживали, помещали в спирт на 6 месяцев, в соляную кислоту и т.д. Оказалось что после таких манипуляций организатор не терял своих индукционных способностей. Большинство эмбриологов усмотрело в этом открытии новую эру в эмбриологии, познание химического механизма организаторов, нахождение формообразовательных и органообразующих веществ. Некоторые лаборатории пытались доказать, что действие мёртвых организаторов отлично от действия живых. Но вскоре, к удивлению исследователей, была обнаружена неспецифичность организаторов. Убитые кусочки гидры, кусочки печени, почек, языка, различные ткани трупа человека, кусочки мускулов молюска, раздавленные дафнии, кусочки кишки рыбы, клетки саркомы крыс, ткани курицы и человека оказались индукторами. Началось одностороннее увлечение химией индукторов: стали пытаться разгадать формулу вещества, индуцирующего специфический формообразовательный процесс, и за несколько лет накопился богатый материал. Дело доходило до абсурда: кусочки агара, якобы пропитанные таким веществом, жирные кислоты растительных масел, ядовитый для животных цефалин, нафталин и др. Обнаружилось что даже клетки растений пересаженных в зародыш дают эффект индуктора! В настоящее время ясно, что все эти попытки найти специфическое формообразовательное вещество были простым увлечением и не достигли цели.

Возвратимся снова к теории организаторов. В обычной схеме об индукционных влияниях организаторов на клеточный материал, который реагирует, индуцируется, подразумевается как нечто индиферентное, то есть только и ждёт, что бы его подтолкнули к детерминации. Однако это не так. Клеточный материал, на который действует организатор, не индеферентен. М.Н.Рагозина показала, что закладка осевой мезодермы представляет собой не только индуктор нервной трубки, но и сама нуждается для своей дифференциации в формативном воздействии со стороны закладки нервной системы. При этом имеет место не односторонняя индукция, а взаимодействие частей развивающегося зародыша. Один и тот же индуктор может индуцировать различные образования, например, слуховой пузырёк при пересадки на бок зародыша амфибии может индуцировать добавочную конечность, тот же пузырёк при пересадке его в иное место и на другом этапе развития может индуцировать слуховую капсулу. Он же может выступать в роли индуктора добавочного ядра хрусталика в случае соприкосновения с зачатком хрусталика и т.д.

Итоги к сказанному лучше подвести цитатой из работы Уодингтона, который с рядом других учёных так энергично пытался выяснить химию организаторов: «Казалось, мы находимся на пороге исключительно важного открытия – возможность получить вещество, влияющее на развитие. Трудность заключалась не в том, что мы не могли найти вещество действующее подобно организатору, вызывающему диференцировку клеток, а в том, что мы нашли слишком много таких веществ. В конце концов Дж.Нидгем, М.Браше и автор этой статьи убедительно показали, что даже метиленовый синий – вещество, которое даже человек с самой пылкой фантазией не станет искать в эмбрионе, - может индуцировать образование нервной ткани. Оказалось, что искать в единичной клетках реагирующее вещество, которое могло бы дать ключ к пониманию дифференцировки, бесполезно. Причину дифференцировки следует искать в реагирующей ткани, в которой она и происходит».

Химический аспект изучения и дифференциации клеток и тканей:

В 50 – 60-х годах в связи с возрастающим взаимовлиянием биологии, физики и химии и использованием новых методик снова повысился интерес к химии индукторов, хотя содержание этого понятия резко изменилось. Во-первых, считается неосновательным искать какое-то одно формообразовательное вещество, вызывающее интекцию. Во-вторых, всё меньшее число исследователей уподобляет явление индукции, наблюдаемые в ходе нормального развития зародышей, феномену мёртвых организаторов. В-третьих, вместо гипотезы Шпемана об индукциионных влияниях организатора на «индиферентный» клеточный материал утвердилась мысль о взаимозависимости частей в развитии зародышей.

В 1938 году С.Тойвонен, испытывая сотни различных тканей животных на способность к индукции осевых зачатков у амфибий, обнаружил что некоторые индукторы обладают качественно различным действием, а именно: ткань печени морских свинок индуцирует почти исключительно передний мозг и его производные, костный мозг – туловищные и хвостовые структуры. В 1950 г. Ф.Леман предложил гипотезу, принятую Тойвоненом, Яматадой и другими исследователями. Согласно этой гипотезе, первичная индукция может быть вызвана всего двумя агентами, образующими два взаимоперекрывающихся градиента. Одно вещество индуцирует исключительно переднеголовные (архенцефалические) структуры, а другое вещество – туловищно-хвостовые (дейтеренцефалические) структуры. Если много второго агента и мало первого, то индуцируется передний мозг; если много первого и мало второго, то возникает туловищно-хвостовая часть. Всё это имеет место, согласно гипотезе, в нормальном развитии амфибий; надо представить себе наличие определённых индуцирующих веществ в соответствующих количественных комбинациях в разных участках зародыша. Тойвонен

Провёл серию опытов с раздельным и одновременным действием ткани печени и костного мозга и данные подтверждают данную теорию. При действии тканей печени образовывался передний мозг и его производные, при действии костного мозга – туловищно-хвостовые ткани, а при одновременном действии печени и костного мозга образовывались структуры всех уровней тела нормальной личинки.

Тойвонен предполагает, что каждый из двух индукторов образует своё активное поле, при одновременном действии их действии возникает комбинированное поле (рис. 2)

К 70-м годам химия «индукторов» оказывается столь же неясной, как и в период односторонних химических увлечений эмбриологов в 30-е годы. Несмотря на большой прогресс в химической эмбриологии, все основные вопросы об «организационных центрах» остаются теми же что и в 40-х годах. Гипотеза Тойвонена не даёт, к сожалению, ничего принципиально нового по сравнению со старыми односторонне химическими схемами сущности индукторов и организаторов, только вместо одного вещества думают о двух или нескольких. Должны быть приняты во внимание следующие очевидные недостатки гипотезы Тойвонена, на которые от части указывает и сам автор. Во-первых, эта гипотеза говорит только об индукторах и совершенно не касается главного вопроса – о реагирующих системах. Во-вторых, экспериментальное её обоснование дано на основании действия каких-то веществ тканей животных, а делается попытка объяснения явления нормального развития зародышей амфибии. Требуется доказать, что выделенные вещества, действительно присутствуют в нормальной гаструле эмбриона. Если оно присутствует, то каково их местоположение? Однако нет оснований игнорировать интересные даные Тойвонена и других исследователей. С этими данными перекликаются давние опыты по анимальных и вегетативных тенденциях у морских ежей. (рис. 3)

В опытах хирургического вмешательства на стадиях от 16 до 64 бластомеров удалялась различные части зародыша – анимальные и вегетативные. Нормальное развитие возникало если анимальные и вегетативные градиенты не доминировали друг над другом. В сущности эти опыты близки к взглядам Товонена.

Теория полей:

В понятие поля разные исследователи вкладывали разное содержание. Некоторые думали о поле как об области, в пределах которой определённые факторы действуют одинаковым образом. Внутри поля, по их представлениям существует состояние равновесия. Поле – это единая система, а не мозаика, где одни части можно было бы удалить или заменить так, что бы при этом система не изменилась. Внутри поля-системы может быть разная концентрация химических веществ, могут быть градиенты метаболизма.

Теория поля Кольцова. Представление Н.К.Кольцова о целостности организма и его теория поля – это попытка рассмотрения данных экспериментальной эмбриологии и генетики в физико-химическом аспекте.

Ооцит и яйцо – организованные системы, с определённо выраженной полярностью, с определённым расположением клеточных структур. Уже в ооцитах находятся разнообразные вещества и структуры, дающие своеобразную реакцию на кислые и основные красители, в зависимости от их рН. Это означает, что различные части клетки могут иметь те или инные положительные или отрицательные заряды. В целой клетке поверхность её, как правило, заряжена отрицательно, а поверхность ядра и хромосом – положительно. При созревании ооцита создаётся соответственно его строению электрическое силовое поле, «закрепляющее» это строение. Под влиянием силового поля в клетке должны возникать определённые, объясняющиеся разностью потенциалов катафорезные точки перемещения веществ. При активации яйца сперматозоидом происходит изменение дыхания, иногда резкое изменение рН, изменение проницаемости мембран и передвижения веществ. По Кольцову, эти явления обусловлены, очевидно, напряжениями перезаряжающихся силовых полей, разностью потенциалов. Таким образом, начинающийся развиваться зародыш – это силовое поле. В ходе развития разные пункты силового поля характеризуются разностью потенциалов. Речь идёт не только об электрических потенциалах, но и о химических, температурных, гравитационных, диффузных, капилярных, механических и др.

Даже такой фактор, как уменьшение или увеличение проницаемости мембран клетки, неизбежно вызывает изменение токов жидких веществ. Благодаря тому, что между бластомерами существуют определённые связи, можно представить себе что изменение токов жидких веществ может влиять и на пространственное расположение бластомеров. Различного характера потенциалы, их изменения не только сопровождают развитие зародышей, не только являются отражением состояния его интеграции, но и играют важную роль в развитии, определяя поведение отдельных бластомеров и всего зародыша. В ходе развития силовое поле зародыша изменяется: оно усложняется, дифференцируется, но остаётся единым. Кольцов говорит о центрах с высокой разницей потенциалов, о центрах второй, третьей степени. Он говорит о градиентах с напряжением, убывающим от одного потенциала к другому. От каждого центра распространяются градиенты, определяемые всем силовым полем. При состоянии биофизики 30-х годов Кольцов не мог создать более конкретных физических представлений о поле зародыша. Он считал, что силовое поле не является магнитным, но может быть с ним сравнено. Возникающие в ходе дробления не одинаковые по структуре бластомеры оказываются в разных частях единого поля зародыша и соответственно новому положению изменяют свои биохимические особенности и структуру. Таким образом, поведение каждого участка зародыша зависит от его предварительной структуры, от влияния общего силового поля и влияния близлежащих областей этого поля.

Кольцов вводит также понятие «силовое поле внешней среды» (гравитационное, световое и химическое), приписывая ему важное значение, так как оно влияет на силовое поле внутри зародыша, например определяет направление роста у сидячих животных.

К сожалению, совершенно недостаточно разрабатываются вопросы физики эмбрионального развития. Имеющиеся факты не противоречат мыслям Кольцова о полях.

Близкие к взглядам Кольцова мысли высказывали и другие исследователи Б.Вейсберг в 1968 году предложил единую, физическую трактовку разных морфогенетических процессов, создав представление о колебательных полях. Он изучал колебания электрических потенциалов у миксомицетов, сходство некоторых органических форм, например колоний шампиньонов с расположением мелких частиц в акустическом поле. Вейсберг думает, что колебательные поя приводят к тому, что клеточные комплексы должны разделяться на территории, внутри которых колебания синхронизируются по фазам, а между территориями создаётся разность фаз. Происходящее в результате этого пространственное разъединение может приводить к морфогенетическим движениям: впячивание клеток при гаструляции, расположение полукружных каналов внутреннего уха, формирование гребных пластинок у ктенофор и т.п.

Анализ всех теорий не позволяет признать не одну из них как теорию индивидуального развития, могущей удовлетворить эмбриолога. Вне зависимости от методологии исследований нужно принимать к вниманию тот очевидный факт, что любые представления о зародыше как о мозаике частей, как сумме бластомеров и т.д. несостоятельны, что организм на любой стадии развития так или иначе интегрирован, представляет собой целостную систему.

Список использованной литературы:

Б.П.Токин «Общая эмбриология»

издательство «Высшая школа» Москва 1970г.

Б.Альберс, Д.Брей, Дж.Льюис, М,Рэфф,К.Робертс, Дж,Уотсон «Молекулярная биология клетки» том 4

издательство «Мир» Москва 1987г.

ДИФФЕРЕНЦИРОВКА ДИФФЕРЕНЦИРОВКА

возникновение различий между однородными клетками и тканями, изменения их в ходе развития особи, приводяшие к формированию специализир. клеток, органов и тканей. Д. лежит в основе морфогенеза и происходит в осн. в процессе зародышевого развития, а также в постэмбриональном развитии и в нек-рых органах взрослого организма, напр. в кроветворных органах то-типотентные стволовые кроветворные клетки дифференцируются в разл. клетки крови, а в гонадах первичные половые клетки - в гаметы. Д. выражается в изменении строения и функц. свойств (нервные клетки приобретают способность передавать нервные импульсы, железистые - секретировать соответств. вещества и т. д.). Гл. факторы Д.- различия цитоплазмы ранних эмбриональных клеток, обусловленные неоднородностью цитоплазмы яйца, и специфич. влияния соседних клеток - индукция. На ход Д. оказывают влияние гормоны. Мн. факторы, определяющие Д., ещё не известны. Под действием к.-л. фактора Д. сначала происходит детерминация, когда внеш. признаки Д. ещё не проявляются, но дальнейшее развитие ткани уже может происходить независимо от фактора, вызывающего Д. Обычно Д. необратима. Однако в условиях повреждения ткани, способной к регенерации, а также при злокачеств. перерождении клетки происходит частичная дедифференцировка. при этом возможны случаи приобретения дедифференцир. клетками способности к Д. в ином направлении (метаплазия). Молекулярно-генетич. основа Д.- активность специфических для каждой ткани генов. Хотя все соматич. клетки организма обладают одинаковым набором генов, в каждой ткани активна лишь часть генов, ответственных за данную Д. Роль факторов Д. сводится, т. о., к избират. активапии (включению) этих генов. Активность определ. генов приводит к синтезу соотв. белков, определяющих Д. Полагают, что решающую роль в определении формы клеток, пх способности к соединению друг с другом (см. АДГЕЗИЯ), их движениях в ходе Д. играют цитоске-лет и гликопротеидный комплекс клеточной мембраны - гликокаликс.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

дифференциро́вка

Процесс возникновения различий между первоначально однородными клетками, в ходе которого образуются специализированные клетки, ткани и органы, способные выполнять в организме определённые функции. Таким образом, дифференцировка лежит в основе индивидуального развития многоклеточных организмов от оплодотворения яйцеклетки до формирования взрослой особи. У животных дифференцировка интенсивно происходит при зародышевом развитии , а также в постэмбриональный период, пока организм растёт и развивается. Клеточные дифференцировки идут и у взрослого организма, когда, напр., в кроветворных органах стволовые клетки дифференцируются в постоянно обновляющиеся клетки крови, а в половых органах первичные половые клетки – в гаметы . В отличие от животных, растения растут всю жизнь, и, следовательно, образование новых органов и тканей у них идёт до тех пор, пока они существуют. Эти процессы обеспечиваются образовательными тканями , или меристемами. Меристемы состоят из неспециализированных, внешне одинаковых клеток, которые в ходе многократных делений дифференцируются и дают начало различным тканям и органам растения.
Клеточные процессы дифференцировки определяются заключёнными в генах программами. Так как все соматические клетки развивающегося зародыша содержат одну и ту же генетическую информацию, возникновение из генетически однотипных клеток таких различно специализированных клеток, как, напр., клетки мозга, мышц, кожи у животных или клетки листьев и корней у растений, можно объяснить только работой в них различных генов или т.н. дифференциальной экспрессией (активностью) генов. Сложные молекулярные и клеточные механизмы, регулирующие включение и выключение разных генов и направляющие клетки по различным путям дифференцировки, изучены недостаточно.
Ранее считалось, что дифференцировка соматических клеток, особенно клеток высших животных, необратима. Однако успехи таких методов, как культура клеток и тканей и клонирование , показали, что в ряде случаев дифференцировка обратима: при определённых условиях из специализированной клетки можно вырастить полноценный организм.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Синонимы :

Смотреть что такое "ДИФФЕРЕНЦИРОВКА" в других словарях:

    дифференцировка - и, ж. différencier, нем. differenzieren. устар. Действие по знач. гл. дифференицировать. Усовершенствования при нашей цивилизации клонятся все более и более к развитию только некоторых наших способностей, к развитию одностороннему, к… … Исторический словарь галлицизмов русского языка

    дифференцировка - 1. Процесс, в результате коего индивидуум перестает реагировать на те варианты стимула, после коих не предъявляются раздражители безусловные или подкрепляющие агенты, и воспроизводит поведенческие реакции лишь на те раздражители, кои продолжают… … Большая психологическая энциклопедия

    Превращение в процессе индивидуального развития организма (онтогенеза) первоначально одинаковых, неспециализированных клеток зародыша в специализированные клетки тканей и органов … Большой Энциклопедический словарь

    Процесс превращения стволовых клеток в клетки, дающие начало какой либо одной линии клеток крови. Этот процесс приводит к образованию красных кровяных клеток (эритроцитов), тромбоцитов, нейтрофилов, моноцитов, эозинофилов, базофилов и лимфоцитов … Медицинские термины

    Клеток процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной… … Википедия

    Сущ., кол во синонимов: 2 дифференциация (11) дифференцирование (6) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    дифференцировка - Специализация до этого однородных клеток и тканей организма Тематики биотехнологии EN differentiation … Справочник технического переводчика

    дифференцировка - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДИФФЕРЕНЦИРОВКА – процесс формирования специфических свойств у клеток в ходе индивидуального развития и появления различий между однородными клетками и тканями, приводящий к образованию специализированных клеток, тканей и… … Общая эмбриология: Терминологический словарь

    Превращение в процессе индивидуального развития организма (онтогенеза) первоначально одинаковых, неспециализированных клеток зародыша в специализированные клетки тканей и органов. * * * ДИФФЕРЕНЦИРОВКА ДИФФЕРЕНЦИРОВКА, превращение в процессе… … Энциклопедический словарь

    Differentiation дифференцировка. Лежащее в oснове морфогенеза , как правило, необратимое возникновение различий между изначально (у раннего эмбриона) однородными клетками с образованием специализированных клеток, тканей и… … Молекулярная биология и генетика. Толковый словарь.

Дифференцировка и патология клеток

1. Дифференцировка клеток. Факторы и регуляция дифференцировки. Стволовая клетка и дифферон

Этот вопрос относится к числу наиболее сложных и в тоже время интересных как для цитологии, так и для биологии. Дифференцировка - это процесс возникновения и развития структурных и функциональных различий между первоначально однородными эмбриональными клетками, в результате которого образуются специализированные клетки, ткани и органы многоклеточного организма. Дифференцировка клеток является важнейшей составной частью процесса формирования многоклеточного организма. В общем случае дифференцировка необратима, т.е. высокодифференцированные клетки не могут превращаться в клетки другого типа. Это явление называется терминальной дифференцировкой и присуще преимущественно клеткам животных. В отличие от клеток животных, большинство клеток растений даже после дифференцировки способны переходить к делению и даже вступать на новый путь развития. Такой процесс называется дедифференцировкой. Например, при надрезе стебля некоторые клетки в зоне разреза начинают делиться и закрывают рану, другие вообще могут подвергаться дедифференцировке. Так клетки коры могут превратиться в клетки ксилемы и восстановить непрерывность сосудов в области повреждения. В экспериментальных условиях при культивировании растительной ткани в соответствующей питательной среде клетки образуют каллус. Каллус - это масса относительно недифференцированных клеток, полученная из дифференцированных клеток растений. При соответствующих условиях из одиночных клеток каллуса можно вырастить новые растения. При дифференцировке не происходит потерь или перестройки ДНК. Об этом убедительно свидетельствуют результаты экспериментов по пересадке ядер из дифференцированных клеток в недифференцированные. Так ядро из дифференцированной клетки вводили в энуклеированную яйцеклетку лягушки. В результате из такой клетки развивался нормальный головастик. Дифференцировка в основном происходит в эмбриональный период, а также на первых стадиях постэмбрионального развития. Кроме того, дифференцировка имеет место в некоторых органах взрослого организма. Например, в кроветворных органах стволовые клетки дифференцируются в различные клетки крови, а в гонадах - первичные половые клетки - в гаметы.

Факторы и регуляция дифференциации. На первых этапах онтогенеза развитие организма происходит под контролем РНК и других компонентов, находящихся в цитоплазме яйцеклетки. Затем на развитие начинают оказывать влияние факторы дифференцировки.

Выделяют два основных фактора дифференцировки:

1.Различия цитоплазмы ранних эмбриональных клеток, обусловленные неоднородностью цитоплазмы яйца.

2.Специфические влияния соседних клеток (индукция).

Роль факторов дифференцировки заключается в избирательной активации или инактивации тех или иных генов в различных клетках. Активность определенных генов приводит к синтезу соответствующих белков, направляющих дифференциацию. Синтезируемые белки могут блокировать или, напротив, активировать транскрипцию. Первоначально активация или инактивация разных генов зависит от взаимодействия тотипотентных ядер клеток со своей специфической цитоплазмой. Возникновение локальных различий в свойствах цитоплазмы клеток называется ооплазматической сегрегацией. Причина этого явления заключается в том, что в процессе дробления яйцеклетки участки цитоплазмы, различающиеся по своим свойствам, попадают в разные бластомеры. Наряду с внутриклеточной регуляцией дифференцировки с определенного момента включается надклеточный уровень регуляции. К надклеточному уровню регуляции относится эмбриональная индукция.

Эмбриональная индукция - это взаимодействие между частями развивающегося организма, в процессе которого одна часть (индуктор) входит в контакт с другой частью (реагирующей системой) и определяет развитие последней. Причем установлено не только воздействие индуктора на реагирующую систему, но и влияние последней на дальнейшую дифференцировку индуктора.

Под действием какого-либо фактора сначала происходит детерминация.

Детерминацией, или латентной дифференцировкой, называют явление, когда внешние признаки дифференцировки еще не проявились, но дальнейшее развитие ткани уже происходит независимо от фактора, вызвавшего их. Клеточный материал считают детерминированным со стадии, на которой он впервые при пересадке в новое место развивается в орган, который из него образуется в норме.

Стволовая клетка и дифферон. К числу перспективных направлений биологии XXI века относится изучение стволовых клеток. Сегодня исследования стволовых клеток по значимости сопоставимо с исследованиями по клонированию организмов. По мнению ученых применение стволовых клеток в медицине позволит лечить многие "проблемные" заболевания человечества (бесплодие, многие формы рака, диабет, рассеянный склероз, болезнь Паркинсона и др.).

Стволовая клетка - это незрелая клетка, способная к самообновлению и развитию в специализированные клетки организма.

Стволовые клетки подразделяют на эмбриональные стволовые клетки (их выделяют из эмбрионов на стадии бластоцисты) и региональные стволовые клетки (их выделяют из органов взрослых особей или из органов эмбрионов более поздних стадий). Во взрослом организме стволовые клетки находятся, в основном, в костном мозге и, в очень небольших количествах, во всех органах и тканях.

Свойства стволовых клеток. Стволовые клетки самоподдерживаются, т.е. после деления стволовой клетки одна клетка остается в стволовой линии, а вторая дифференцируются в специализированную. Такое деление называется несимметричным.

Функции стволовых клеток. Функция эмбриональных стволовых клеток заключается в передаче наследственной информации и образовании новых клеток. Основная задача региональных стволовых клеток - восстановление потерь специализированных клеток после естественной возрастной или физиологической гибели, а также в аварийных ситуациях.

Дифферон - это последовательный ряд клеток, образовавшийся из общего предшественника. Включает стволовые, полустволовые и зрелые клетки.

Например, стволовая клетка, нейробласт, нейрон или стволовая клетка, хондробласт, хондроцит и т. д.

Нейробласт - малодифференцированная клетка нервной трубки, превращающаяся в дальнейшем в зрелый нейрон.

Хондробласт - малодифференцированная клетка хрящевой ткани, превращающаяся в хондроцит (зрелая клетка хрящевой ткани).

Апоптоз и некроз

Апоптоз (с греч. - опадание листьев) - это генетически запрограммированная форма гибели клетки, необходимая в развитии многоклеточного организма и участвующая в поддержании тканевого гомеостаза. Апоптоз проявляется в уменьшении размера клетки, конденсации и фрагментации хроматина, уплотнении плазматической мембраны без выхода содержимого клетки в окружающую среду. Апоптоз обычно противопоставляется другой форме гибели клеток - некрозу, который развивается при воздействии внешних по отношению к клетке повреждающих агентов и неадекватных условий среды (гипоосмия, крайние значения рН, гипертермия, механические воздействия, действие агентов, повреждающих мембрану). Некроз проявляется набуханием клетки и разрывом мембраны вследствие повышения ее проницаемости с выходом содержимого клетки в среду. Первые морфологические признаки апоптоза (конденсация хроматина) регистрируются в ядре. Позже появляются вдавления ядерной мембраны и происходит фрагментация ядра. Отшнуровавшиеся фрагменты ядра, ограниченные мембраной, обнаруживаются вне клетки, их называют апоптотическими тельцами. В цитоплазме происходят расширение эндоплазматической сети, конденсация и сморщивание гранул. Важнейшим признаком апоптоза является снижение трансмембранного потенциала митохондрий. Клеточная мембрана утрачивает ворсинчатость, образует пузыревидные вздутия. Клетки округляются и отделяются от субстрата. Проницаемость мембраны повышается лишь в отношении небольших молекул, причем это происходит позже изменений в ядре. Одной из наиболее характерных особенностей апоптоза является уменьшение объема клетки в противоположность ее набуханию при некрозе. Апоптоз поражает индивидуальные клетки и практически не отражается на их окружении. В результате фагоцитоза, которому клетки подвергаются уже в процессе развития апоптоза, их содержимое не выделяется в межклеточное пространство. Напротив, при некрозе вокруг гибнущих клеток скапливаются их активные внутриклеточные компоненты, закисляется среда. В свою очередь это способствует гибели других клеток и развитию очага воспаления. Сравнительная характеристика апоптоза и некроза клеток приведена в таблице 1.

Таблица 1. Сравнительная характеристика апоптоза и некроза клеток

ПризнакАпоптозНекрозРаспространенностьОдиночная клеткаГруппа клетокПусковой факторАктивируется физиологическими или патологическими стимуламиСкорость развития, часов1-12В пределах 1Изменение размера клеткиУменьшение Увеличение Изменения клеточной мембраныПотеря микроворсинок, образование вздутий, целостность не нарушенаНарушение целостностиИзменения ядраКонденсация хроматина, пикноз, фрагментацияНабуханиеИзменения в цитоплазмеКонденсация цитоплазмы, уплотнение гранулЛизис гранулЛокализация первичного поврежденияВ ядреВ мембранеПричины гибели клеткиДеградация ДНК, нарушение энергетики клеткиНарушение целостности мембраныСостояние ДНКРазрывы с образованием сначала крупных, затем мелких фрагментовНеупорядоченная деградацияЭнергозависимостьЗависитНе зависитВоспалительный ответНетОбычно естьУдаление погибших клетокФагоцитоз соседними клеткамиФагоцитоз нейтрофилами и макрофагамиПримеры проявленияМетаморфозГибель клеток от гипоксии, токсинов

Апоптоз универсально распространен в мире многоклеточных организмов: аналогичные ему проявления описаны у дрожжей, трипаносом и некоторых других одноклеточных. Апоптоз рассматривается как условие нормального существования организма.

В организме апоптоз выполняет следующие функции:

§поддержание постоянства численности клеток. Наиболее простой иллюстрацией значимости апоптоза для многоклеточного организма являются данные о роли этого процесса в поддержании постоянной численности клеток нематоды Caenorhabditis elegans.

§защита организма от возбудителей инфекционных заболеваний, в частности, от вирусов. Многие вирусы вызывают такие глубокие нарушения в обмене веществ зараженной клетки, что она реагирует на эти нарушения запуском программы гибели. Биологический смысл такой реакции заключается в том, что смерть зараженной клетки на ранней стадии, предотвратит распространение инфекции по организму. Правда, у некоторых вирусов выработались специальные приспособления для подавления апоптоза в заражаемых клетках. Так в одних случаях в генетическом материале вируса закодированы вещества, выполняющие роль клеточных антиапоптозных белков-регуляторов. В других случаях вирус стимулирует синтез клеткой ее собственных антиапоптозных белков. Таким образом, создаются предпосылки для беспрепятственного размножения вируса.

§удаление генетически дефектных клеток. Апоптоз является важнейшим средством естественной профилактики раковых новообразований. Есть специальные гены, контролирующие нарушения в генетическом материале клетки. В случае необходимости эти гены сдвигают равновесие в пользу апоптоза, и потенциально опасная клетка гибнет. Если такие гены мутируют, то в клетках развиваются злокачественные новообразования.

§определение формы организма и его частей;

§обеспечение правильного соотношения численности клеток различных типов;

Интенсивность апоптоза выше в начальные периоды онтогенеза, в частности во время эмбриогенеза. Во взрослом организме апоптоз продолжает играть большую роль лишь в быстро обновляющихся тканях.

клетка опухолевый дифференциация

3. Опухолевая трансформация клеток

Мы многое узнали о том, как живет и эволюционирует клетка, хотя недостаточно - о том, как предотвращать рак. Скорее наоборот: мы увидели многообразие факторов и механизмов, которые его индуцируют, а это ослабляет надежду на универсальные способы терапии. Поэтому вспоминаются слова Екклесиаста: во многой мудрости много печали; и кто умножает познания, умножает скорбь. Но ученые работают".

Хесин Р.Б., советский ученый

Проблема онкологических заболеваний является одной из главных для современного общества. По прогнозам Всемирной организации здравоохранения заболеваемость и смертность онкологическими заболеваниями во всем мире за период с 1999 года по 2020 год возрастет в 2 раза (с 10 до 20 млн. новых случаев и с 6 до 12 млн. регистрируемых смертей).

Опухолью называют избыточные патологические разрастания тканей, состоящих из качественно изменившихся, утративших дифференцировку клеток организма.

Термин "рак" пришел к нам с древних времен. В те времена болезнь называли по основному, наиболее заметному, признаку заболевания. По аналогии между выростами злокачественной опухоли в окружающие ее ткани и конечностями рака, это заболевание получило название рак (по лат. cancer). Этот древний термин в наше время хорошо известен всем и пугает каждого. При общении с больными его лучше не использовать.

В возникновении опухолей определяющим являются два фактора: возникновение измененной клетки (трансформация) и наличие условий для ее беспрепятственного роста и размножения в организме.

На протяжении всей жизни в многоклеточном организме происходит огромное число клеточных делений. Например, в человеческом организме это число составляет приблизительно 1016. Периодически в соматических клетках возникают мутации, в том числе и те, которые могут привести к образованию опухолевых клеток. Причем чем больше циклов деления прошла клетка, тем больше вероятность появления дефектных клеток в ее потомстве. Это объясняет резкое увеличение вероятности возникновения онкологических заболеваний с возрастом. Более 50% всех случаев рака выявляются у людей в возрасте б5 лет и старше. Статистические данные показывают, что если принять смертность от рака в 20-летнем возрасте за единицу, то после 50 летнего возраста риск умереть от этого заболевания увеличится в десятки раз.

С образовавшимися дефектными клетками организм борется с помощью иммунной системы. Поскольку возникновение дефектных клеток неизбежно, по всей вероятности, именно нарушения иммунной системы являются определяющими в развитии опухолей. Концепция о роли иммунных механизмов в развитии злокачественных новообразований была выдвинута еще в 1909 г. Эрлихом. Исследования последних лет подтвердили существенную роль иммунодефицитных состояний в развитии опухолей.

Очевидно, что чем больше в организме появляется дефектных клеток, тем выше вероятность пропуска таких клеток со стороны иммунной системы. Трансформацию клеток вызывают канцерогенные факторы.

Канцерогенными факторами называются факторы внешней и внутренней среды, которые могут быть причинами возникновения и развития опухолей.

К факторам внутренней среды условия местонахождения клетки, генетическую предрасположенность организма. Так в чем более неблагоприятных условиях находится клетка, тем больше вероятность возникновения ошибок при ее делении. Травматизация кожи, слизистых оболочек или других тканей организма любыми механическими или химическими раздражителями ведет к увеличению риска возникновения опухоли в этом месте. Именно это определяет повышенный риск возникновения рака тех органов, слизистая которых подвергается наиболее интенсивной естественной нагрузке: рака легких, желудка, толстого кишечника и др. Постоянно травмируемые родинки или рубцы, длительно не заживающие изъязвления так же ведут к интенсивному клеточному делению в неблагоприятных условиях и повышению этого риска. В развитии некоторых опухолей важное значение имеют генетические факторы. У животных роль генетической предрасположенности экспериментально подтверждена на примере высоко- и низкораковых линий мышей.

Внешние канцерогенные факторы условно можно разделить на три основные группы: физические, химические и биологические.

К физическим факторам относится ионизирующее излучение - радиация. В последние десятилетия возникло и достигло больших масштабов загрязнение Земли радионуклидами в результате хозяйственной деятельности человека. Выброс радионуклидов происходит в результате аварий на атомных электростанциях и атомных подводных лодках, сброса в атмосферу слабоактивных отходов с ядерных реакторов и пр. К химическим факторам относятся различные химические вещества (компоненты табачного дыма, бензпирен, нафтиламин, некоторые гербициды и инсектициды, асбест и др.). Источником большинства химических канцерогенов в окружающей среде являются выбросы промышленного производства. К биологическим факторам относятся вирусы (вирус гепатита В, аденовирус и некоторые другие).

По характеру и темпам роста принято различать доброкачественные и злокачественные опухоли.

Доброкачественные опухоли растут относительно медленно и могут существовать годами. Они окружены собственной оболочкой. При росте, увеличиваясь, опухоль отодвигает окружающие ткани, не разрушая их. Клетки доброкачественной опухоли незначительно отличаются от нормальных клеток, из которых опухоль развивалась. Поэтому доброкачественные опухоли носят названия тканей, из которых они развились, с добавлением суффикса "ома" от греческого термина "онкома" (опухоль). Например, опухоль из жировой ткани называется липома, из соединительной - фиброма, из мышечной - миома и т. д. Удаление доброкачественной опухоли с ее оболочкой ведет к полному излечению больного.

Злокачественные опухоли растут значительно быстрее и не имеют собственной оболочки. Опухолевые клетки и тяжи их проникают в окружающие ткани и повреждают их. Прорастая в лимфатический или кровеносный сосуд, они током крови или лимфы могут переноситься в лимфатические узлы или отдаленные органы с образованием там вторичного очага опухолевого роста - метастаза. Клетки злокачественной опухоли значительно отличаются от клеток, из которой они развились. Клетки злокачественной опухоли атипичны, у них изменена клеточная мембрана и цитоскелет, из-за чего они имеют более или менее округлую форму. Опухолевые клетки могут содержать несколько ядер, не типичных по форме и размерам. Характерным признаком опухолевой клетки является утрата дифференцировки и вследствие этого потеря специфической функции.

Напротив, нормальным клеткам присущи все свойства полностью дифференцированных клеток, выполняющих в организме определенные функции. Эти клетки полиморфны и их форма определяется структурированным цитоскелетом. Нормальные клетки организма обычно делятся до образования контактов с соседними клетками, после чего деление останавливается. Такое явление известно как контактное торможение. Исключение составляют эмбриональные клетки, эпителий кишечника (постоянная замена отмирающих клеток), клетки костного мозга (кроветворная система) и опухолевые клетки. Таким образом, важнейшим отличительным признаком опухолевых клеток является неконтролируемая пролиферация считается

Превращение нормальной клетки в трансформированную - процесс многостадийный.

1.Инициация. Почти каждая опухоль начинается с повреждения ДНК в отдельной клетке. Этот генетический дефект может быть вызван канцерогенными факторами, например компонентами табачного дыма, УФ-излучением, рентгеновскими лучами, онкогенными вирусами. По-видимому, в течение человеческой жизни немалое число клеток организма из общего их числа 1014 претерпевает повреждение ДНК. Однако для инициации опухоли важны лишь повреждения протоонкогенов. Эти повреждения являются наиболее важным фактором, определяющим трансформацию соматической клетки в опухолевую. К инициации опухоли может привести и повреждение антионкогена (гена-онкосупрессора).

2. Промоция опухоли это преимущественное размножение измененных клеток. Такой процесс может длиться годами.

. Прогрессия опухоли - это процессы размножения малигнизированных клеток, инвазии и метастазирования, ведущие к появлению злокачественной опухоли.



Новое на сайте

>

Самое популярное