Домой Удаление Матрица парных корреляций в excel. Построим матрицу коэффициентов парной корреляции

Матрица парных корреляций в excel. Построим матрицу коэффициентов парной корреляции

Задание 2

1. Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель.

2. Построить уравнение множественной регрессии в линейной форме с выбранными факторами.

3. Оценить статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

4. Построить уравнение регрессии со статистически значимыми факторами. Оценить качество уравнения регрессии с помощью коэффициента детерминации R 2 . Оценить точность построенной модели.

5. Оценить прогноз объема выпуска продукции, если прогнозные значения факторов составляют 75% от их максимальных значений.

Условия задачи (Вариант 21)

По данным, представленным в таблице 1 (n =17), изучается зависимость объема выпуска продукции Y (млн. руб.) от следующих факторов (переменных):

X 1 – численность промышленно-производственного персонала, чел.

X 2 – среднегодовая стоимость основных фондов, млн. руб.

X 3 – износ основных фондов, %

X 4 – электровооруженность, кВт×ч.

X 5 – техническая вооруженность одного рабочего, млн. руб.

X 6 – выработка товарной продукции на одного работающего, руб.

Таблица 1. Данные выпуска продукции

Y X 1 X 2 X 3 X 4 X 5 X 6
39,5 4,9 3,2
46,4 60,5 20,4
43,7 24,9 9,5
35,7 50,4 34,7
41,8 5,1 17,9
49,8 35,9 12,1
44,1 48,1 18,9
48,1 69,5 12,2
47,6 31,9 8,1
58,6 139,4 29,7
70,4 16,9 5,3
37,5 17,8 5,6
62,0 27,6 12,3
34,4 13,9 3,2
35,4 37,3 19,0
40,8 55,3 19,3
48,1 35,1 12,4


Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель

В таблице 2 представлена матрица коэффициентов парной корреляции для всех переменных, участвующих в рассмотрении. Матрица получена с помощью инструмента Корреляция из пакета Анализ данных в Excel.

Таблица 2. Матрица коэффициентов парной корреляции

Y X1 X2 X3 X4 X5 X6
Y
X1 0,995634
X2 0,996949 0,994947
X3 -0,25446 -0,27074 -0,26264
X4 0,12291 0,07251 0,107572 0,248622
X5 0,222946 0,166919 0,219914 -0,07573 0,671386
X6 0,067685 -0,00273 0,041955 -0,28755 0,366382 0,600899

Визуальный анализ матрицы позволяет установить:

1) У имеет довольно высокие парные корреляции с переменными Х1, Х2 (>0,5) и низкие с переменными Х3,Х4,Х5,Х6 (<0,5);

2) Переменные анализа Х1, Х2 демонстрируют довольно высокие парные корреляции, что обуславливает необходимость проверки факторов на наличие между ними мультиколлинеарности. Тем более, что одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных.

Для выявления мультиколлинеарности факторов выполним тест Фаррара-Глоубера по факторам Х1,Х2,Х3,Х4,Х5,Х6 .

Проверка теста Фаррара-Глоубера на мультиколлинеарность факторов включает несколько этапов.

1) Проверка наличия мультиколлинеарности всего массива переменных .

Одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных. Для выявления мультиколлинеарности между факторами вычисляется матрица межфакторных корреляций R с помощью Пакета анализа данных (таблица 3).

Таблица 3.Матрица межфакторных корреляций R

X1 X2 X3 X4 X5 X6
X1 0,994947 -0,27074 0,07251 0,166919 -0,00273
X2 0,994947 -0,26264 0,107572 0,219914 0,041955
X3 -0,27074 -0,26264 0,248622 -0,07573 -0,28755
X4 0,07251 0,107572 0,248622 0,671386 0,366382
X5 0,166919 0,219914 -0,07573 0,671386 0,600899
X6 -0,00273 0,041955 -0,28755 0,366382 0,600899

Между факторами Х1 и Х2, Х5 и Х4, Х6 и Х5 наблюдается сильная зависимость (>0,5).

Определитель det (R) = 0,001488 вычисляется с помощью функции МОПРЕД. Определитель матрицы R стремится к нулю, что позволяет сделать предположение об общей мультиколлинеарности факторов.

2) Проверка наличия мультиколлинеарности каждой переменной с другими переменными:

· Вычислим обратную матрицу R -1 с помощью функции Excel МОБР (таблица 4):

Таблица 4. Обратная матрица R -1

X1 X2 X3 X4 X5 X6
X1 150,1209 -149,95 3,415228 -1,70527 6,775768 4,236465
X2 -149,95 150,9583 -3,00988 1,591549 -7,10952 -3,91954
X3 3,415228 -3,00988 1,541199 -0,76909 0,325241 0,665121
X4 -1,70527 1,591549 -0,76909 2,218969 -1,4854 -0,213
X5 6,775768 -7,10952 0,325241 -1,4854 2,943718 -0,81434
X6 4,236465 -3,91954 0,665121 -0,213 -0,81434 1,934647

· Вычисление F-критериев , где – диагональные элементы матрицы , n=17, k = 6 (таблица 5).

Таблица 5. Значения F-критериев

F1 (Х1) F2 (Х2) F3 (Х3) F4 (Х4) F5 (Х5) F6 (Х6)
89,29396 89,79536 0,324071 0,729921 1,163903 0,559669

· Фактические значения F-критериев сравниваются с табличным значением F табл = 3,21 (FРАСПОБР(0,05;6;10)) при n1= 6 и n2 = n - k – 1=17-6-1=10 степенях свободы и уровне значимости α=0,05, где k – количество факторов.

· Значения F-критериев для факторов Х1 и Х2 больше табличного, что свидетельствует о наличии мультиколлинеарности между данными факторами. Меньше всего влияет на общую мультиколлинеарность факторов фактор Х3.

3) Проверка наличия мультиколлинеарности каждой пары переменных

· Вычислим частные коэффициенты корреляции по формуле , где – элементы матрицы (таблица 6)

Таблица 6. Матрица коэффициентов частных корреляций

X1 X2 X3 X4 X5 X6
X1
X2 0,996086
X3 -0,22453 0,197329
X4 0,093432 -0,08696 0,415882
X5 -0,32232 0,337259 -0,1527 0,581191
X6 -0,24859 0,229354 -0,38519 0,102801 0,341239

· Вычисление t -критериев по формуле (таблица 7)

n - число данных = 17

K - число факторов = 6

Таблица 7.t-критерии для коэффициентов частной корреляции

X1 X2 X3 X4 X5 X6
X1
X2 35,6355
X3 -0,72862 0,636526
X4 0,296756 -0,27604 1,446126
X5 -1,07674 1,13288 -0,4886 2,258495
X6 -0,81158 0,745143 -1,31991 0,326817 1,147999

t табл = СТЬЮДРАСПОБР(0,05;10) = 2,23

Фактические значения t-критериев сравниваются с табличным значением при степенях свободы n-k-1 = 17-6-1=10 и уровне значимости α=0,05;

t21 > tтабл

t54 > tтабл

Из таблиц 6 и 7 видно, что две пары факторов X1 и Х2, Х4 и Х5 имеют высокую статистически значимую частную корреляцию, то есть являются мультиколлинеарными. Для того чтобы избавиться от мультиколлинеарности, можно исключить одну из переменных коллинеарной пары. В паре Х1 и Х2 оставляем Х2, в паре Х4 и Х5 оставляем Х5.

Таким образом, в результате проверки теста Фаррара-Глоубера остаются факторы: Х2, Х3, Х5, Х6.

Завершая процедуры корреляционного анализа, целесообразно посмотреть частные корреляции выбранных факторов с результатом Y.

Построим матрицу парных коэффициентов корреляции, исходя из данных таблицы 8.

Таблица 8. Данные выпуска продукции с отобранными факторами Х2, Х3, Х5, Х6.

№ наблю-дения Y X 2 X 3 X 5 X 6
39,5 3,2
46,4 20,4
43,7 9,5
35,7 34,7
41,8 17,9
49,8 12,1
44,1 18,9
48,1 12,2
47,6 8,1
58,6 29,7
70,4 5,3
37,5 5,6
12,3
34,4 3,2
35,4
40,8 19,3
48,1 12,4

В последнем столбце таблицы 9 представлены значения t-критерия для столбца У.

Таблица 9.Матрица коэффициентов частной корреляции с результатом Y

Y X2 X3 X5 X6 t критерий (t табл (0,05;11)= 2,200985
Y 0,996949 -0,25446 0,222946 0,067685
X2 0,996949 -0,26264 0,219914 0,041955 44,31676
X3 -0,25446 -0,26264 -0,07573 -0,28755 0,916144
X5 0,222946 0,219914 -0,07573 0,600899 -0,88721
X6 0,067685 0,041955 -0,28755 0,600899 1,645749

Из таблицы 9 видно, что переменная Y имеет высокую и одновременно статистически значимую частную корреляцию с фактором Х2.

Контрольная работа №2

Вариант№5

Задание1. Используя компьютерные технологии, провести корреляционно-регрессионный анализ исследуемых экономических показателей и построить регрессионную модель………………………..…..3

1.1 Построение корреляционного поля ………………………………………4

1.2 Построение матрицы коэффициентов парной корреляции……………6

1.3 Построение и анализ однофакторных регрессионных моделей линейного и экспонентного вида средствами встроенных функций ТП MS Excel…………………………………………………………………………...6

1.4 Построение линейной однофакторной регрессионной модели……….10

1.5 Выводы………………………………………………………………………15

Задание 2. Используя компьютерные технологии, решить задачи линейного программирования……………………………………………….18

а) Задача оптимального планирования производства……………….19

1. Математическую постановку задачи……………………………………..19

2. Размещение на рабочем листе ТП MS Excel исходных данных, расчёт значений ограничений, расчёт значений целевой функции……………...19

3. Формулировка математической модели задачи в терминах ячеек рабочего листа ТП MS Excel…………………………………………………..20

4. Поиск оптимального решения поставленной задачи средствами надстройки «Поиск решения»………………………………………………..20

5. Анализ результатов………………………………………………………….21

б) Задача оптимизации плана перевозок (транспортная задача)…23

1. Математическую постановку задачи……………………………………..23

2. Размещение данных на рабочем листе ТП MS Excel …………………...24

3. Постановка задачи в терминах рабочего листа Excel для использования утилиты «Поиск решения»….…………………………25

4. Анализ результатов………………………………………………………….26

Список использованной литературы………………………………………..28

Задание 1. Используя компьютерные технологии, провести корреляционно-регрессионный анализ исследуемых экономических показателей и построить регрессионную модель.

В качестве инструментария исследования использовать:



Инструменты надстройки Пакет Анализа ТП MS Excel;

Встроенные функции библиотеки Stats (Statistics) CKM Maple.

Условия задания 1:

По выборочным данным исследовать влияние факторов X1, X2 и Х3 на результативный признак Y.

Построить корреляционное поле и сделать предположение о наличии и типе связи между исследуемыми факторами;

Оценив тесноту связи между исследуемыми факторами, построить многофакторную (однофакторную) линейную регрессионную модель вида Y=f(X1,X2 Х3)или вида Y=f(X).

Оценить:

Адекватность уравнения регрессии по значению коэффициента детерминированности R 2 ;

Значимость коэффициентов уравнения регрессии по t- критерию Стьюдента при заданном уровне доверительной вероятности р=0,05;

Степень случайности связи между каждым факторам Х и признаком Y (критерий Фишера);

Зависимость между показателями Х 1 , Х 2 , Х 3 основных фондов и объемом валовой продукции У предприятия одной из отраслей промышленности характеризуется следующими данными:

Вариант 5

X 1 1.5 2.6 3.5 4.8 5.9 6.3 7.2 8.9 9.5 11.1 15.0
X 2 10.2 15.3 18.4 20.5 24.7 25.6 27.3 28.3 29.6 30.1 31.0
X 3 1.1 2.3 3.5 4.1 5.7 6.6 7.3 8.5 9.8 10.1 12.0
Y

Решение задания 1.

Решение задания 1 предполагает.

1. Построение корреляционного поля.

2. Построение матрицы коэффициентов парной корреляции.

3. Построение и анализ однофакторных регрессионных моделей линейного и экспонентного вида средствами встроенных функций ТП MS Excel.

4. Построение линейных однофакторных регрессионных моделей средствами надстройки «Пакет анализа».

5. Выводы.

Построение корреляционного поля.

Разместим таблицу с исходными данными в ячейках A3:D15 рабочего листа Excel.

Приложение1.1
Y X1 X2 X3
1,5 10,2 1,1
2,6 15,3 2,3
3,5 18,4 3,5
4,8 20,5 4,1
5,9 24,7 5,7
6,3 25,6 6,6
7,2 27,3 7,3
8,9 28,3 8,5
9,5 29,6 9,8
11,1 30,1 10,1
?

Используя возможности мастера диаграмм ТП MS Excel, построим корреляционное поле, то есть представим графически связь между результирующим признаком Y и каждым из факторов X. Из графиков видно, что между результирующим признаком Y и каждым из факторов X существует прямо пропорциональная зависимость, приближающаяся к линейной.

.

.

Исследуем тесноту и характер связи между факторами.

Построение матрицы коэффициентов парной корреляции.

Используя надстройку «Пакет анализа» ТП MS Excel (Сервис – Анализ данных – Корреляция), построим матрицу коэффициентов парной корреляции. Окно инструмента «Корреляция» представлено на рисунке 1. Матрица коэффициентов парной корреляции представлена на рисунке 2.

Рис.1. –Окно «Корреляция»

Рис.2. – Матрица коэффициентов парной корреляции.

Из этой матрицы видно, что все рассматриваемые факторы X1 – X3 имеют тесную связь с результативным признаком Y. Кроме того, все факторы Х между собой мультиколлинеарны. Поэтому построение многофакторной модели вида Y=f(Х1,Х2,Х3) невозможно.

Первоначально в модель у включают все главные компоненты (в скобках указаны расчетные значения t -критерия):

Качество модели характеризуют: множественный коэффициент детерминации r = 0,517, средняя относительная ошибка аппроксимации = 10,4%, остаточная дисперсия s 2 = 1,79 и F набл = 121. Ввиду того что F набл > F кр =2,85 при α = 0,05, v 1 = 6, v 2 = 14, уравнение регрессии значимо и хотя бы один из коэффициентов регрессии - β 1 , β 2 , β 3 , β 4 - не равен нулю.

Если значимость уравнения регрессии (гипотеза Н 0: β 1 = β 2 = β 3 = β 4 = 0проверялась при α = 0,05, то значимость коэффициентов регрессии, т.е. гипотезы H 0: β j = 0 (j = 1, 2, 3, 4), следует проверять при уровне значимости, большем, чем 0,05, например при α = 0,1. Тогда при α = 0,1, v = 14 величина t кр = 1,76, и значимыми, как следует из уравнения (53.41), являются коэффициенты регрессии β 1 , β 2 , β 3 .

Учитывая, что главные компоненты не коррелированы между собой, можно сразу исключить из уравнения все незначимые коэффициенты, и уравнение примет вид

(53.42)

Сравнив уравнения (53.41) и (53.42), видим, что исключение незначимых главных компонент f 4 и f 5 , не отразилось на значениях коэффициентов уравнения b 0 = 9,52, b 1 = 0,93, b 2 = 0,66 и соответствующих t j (j = 0, 1, 2, 3).

Это обусловлено некоррелированностью главных компонент. Здесь интересна параллель уравнений регрессии по исходным показателям (53.22), (53.23) и главным компонентам (53.41), (53.42).

Уравнение (53.42) значимо, поскольку F набл = 194 > F кр = 3,01, найденного при α = 0,05, v 1 = 4, v 2 = 16. Значимы и коэффициенты уравнения, так как t j > t кр . = 1,746, соответствующего α = 0,01, v = 16 для j = 0, 1, 2, 3. Коэффициент детерминации r = 0,486 свидетельствует о том, что 48,6% вариации у обусловлено влияниемтрех первых главных компонент.

Уравнение (53.42) характеризуется средней относительной ошибкой аппроксимации = 9,99% и остаточной дисперсией s 2 = 1,91.

Уравнение регрессии на главных компонентах (53.42) обладает несколько лучшими аппроксимирующими свойствами по сравнению с регрессионной моделью (53.23) по исходным показателям: r = 0,486 > r = 0,469; = 9,99% < (х ) = 10,5% и s 2 (f) = 1,91 < s 2 (x) = 1,97. Кроме того, в уравнении (53.42) главные компоненты являются линейными функциями всех исходных показателей, в то время как в уравнение (53.23) входят только две переменные (x 1 и х 4 ). В ряде случаев приходится учитывать, что модель (53.42) трудноинтерпретируема, так как в нее входит третья главная компонента f 3 , которая нами не интерпретирована и вклад которой в суммарную дисперсию исходных показателей (x 1 , ..., х 5) составляет всего 8,6%. Однако исключение f 3 из уравнения (53.42) значительно ухудшает аппроксимирующие свойства модели: r = 0,349; = 12,4% и s 2 (f ) = 2,41. Тогда в качестве регрессионной модели урожайности целесообразно выбрать уравнение (53.23).

Кластерный анализ

В статистических исследованиях группировка первичных данных является основным приемом решения задачи классификации, а поэтому и основой всей дальнейшей работы с собранной информацией.

Традиционно эта задача решается следующим образом. Из множества признаков, описывающих объект, отбирается один, наиболее информативный, с точки зрения исследователя, и производится группировка данных в соответствии со значениями этого признака. Если требуется провести классификацию по нескольким признакам, ранжированным между собой по степени важности, то сначала осуществляется классификация по первому признаку, затем каждый из полученных классов разбивается на подклассы по второму признаку и т.д. Подобным образом строится большинство комбинационных статистических группировок.

В тех случаях, когда не представляется возможным упорядочить классификационные признаки, применяется наиболее простой метод многомерной группировки - создание интегрального показателя (индекса), функционально зависящего от исходных признаков, с последующей классификацией по этому показателю.

Развитием этого подхода является вариант классификации по нескольким обобщающим показателям (главным компонентам), полученным с помощью методов факторного или компонентного анализа.

При наличии нескольких признаков (исходных или обобщенных) задача классификации может быть решена методами кластерного анализа, которые отличаются от других методов многомерной классификации отсутствием обучающих выборок, т.е. априорной информации о распределении генеральной совокупности.

Различия между схемами решения задачи по классификации во многом определяются тем, что понимают под понятиями «сходство» и «степень сходства».

После того как сформулирована цель работы, естественно попытаться определить критерии качества, целевую функцию, значения которой позволят сопоставить различные схемы классификации.

В экономических исследованиях целевая функция, как правило, должна минимизировать некоторый параметр, определенный на множестве объектов (например, целью классификации оборудования может явиться группировка, минимизирующая совокупность затрат времени и средств на ремонтные работы).

В случаях когда формализовать цель задачи не удается, критерием качества классификации может служить возможность содержательной интерпретации найденных групп.

Рассмотрим следующую задачу. Пусть исследуется совокупность п объектов, каждый из которых характеризуется k измеренными признаками. Требуется разбить эту совокупность на однородные в некотором смысле группы (классы). При этом практически отсутствует априорная информация о характере распределения k -мерного вектора Х внутри классов.

Полученные в результате разбиения группы обычно называются кластерами* (таксонами**, образами), методы их нахождения - кластер-анализом (соответственно численной таксономией или распознаванием образов с самообучением).

* Clаster (англ.) - группа элементов, характеризуемых каким-либо общимсвойством.

**Тахоп (англ.) - систематизированная группа любой категории.

Необходимо с самого начала четко представлять, какая из двух задач классификации подлежит решению. Если решается обычная задача типизации, то совокупность наблюдений разбивают на сравнительно небольшое число областей группирования (например, интервальный вариационный ряд в случае одномерных наблюдений) так, чтобы элементы одной такой области находились друг от друга по возможности на небольшом расстоянии.

Решение другой задачи заключается в определении естественного расслоения результатов наблюдений на четко выраженные кластеры, лежащие друг от друга на некотором расстоянии.

Если первая задача типизации всегда имеет решение, то во втором случае может оказаться, что множество наблюдений не обнаруживает естественного расслоения на кластеры, т.е. образует один кластер.

Хотя многие методы кластерного анализа довольно элементарны, основная часть работ, в которых они были предложены, относится к последнему десятилетию. Это объясняется тем, что эффективное решение задач поиска кластеров, требующее выполнения большого числа арифметических и логических операций, стало возможным только с возникновением и развитием вычислительной техники.

Обычной формой представления исходных данных в задачах кластерного анализа служит матрица

каждая строка которой представляет результаты измерений k рассматриваемых признаков у одного из обследованных объектов. В конкретных ситуациях может представлять интерес как группировка объектов, так и группировка признаков. В тех случаях, когда разница между двумя этими задачами не существенна, например при описании некоторых алгоритмов, мы будем пользоваться только термином «объект», включая в это понятие и термин «признак».

Матрица Х не является единственным способом представления данных в задачах кластерного анализа. Иногда исходная информация задана в виде квадратной матрицы

элемент r ij которой определяет степень близости i -го объекта к j -му.

Большинство алгоритмов кластерного анализа полностью исходит из матрицы расстояний (или близостей) либо требует вычисления отдельных ее элементов, поэтому если данные представлены в форме X, то первым этапом решения задачи поиска кластеров будет выбор способа вычисления расстояний, или близости, между объектами или признаками.

Несколько проще решается вопрос об определении близости между признаками. Как правило, кластерный анализ признаков преследует те же цели, что и факторный анализ: выделение групп связанных между собой признаков, отражающих определенную сторону изучаемых объектов. Мерой близости в этом случае служат различные статистические коэффициенты связи.


Похожая информация.


Коллинеарными являются факторы …

Решение:

Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . В нашей модели только коэффициент парной линейной регрессии между факторами и больше 0,7. , значит, факторы и коллинеарны.

4. В модели множественной регрессии определитель матрицы парных коэффициентов корреляции между факторами , и близок к нулю. Это означает, что факторы , и …

мультиколлинеарны

независимы

количественно измеримы

Решение:

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Если факторы не коррелированы между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной. Поскольку все недиагональные элементы были бы равны нулю.
, поскольку = = и = = =0.
Если между факторами существует полная линейная зависимость и все коэффициенты парной корреляции равны единице, то определитель такой матрицы равен нулю.


Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

5. Для эконометрической модели линейного уравнения множественной регрессии вида построена матрица парных коэффициентов линейной корреляции (y – зависимая переменная; х (1) , х (2) , х (3) , x (4) – независимые переменные):


Коллинеарными (тесно связанными) независимыми (объясняющими) переменными не являются

x (2) и x (3)

x (1) и x (3)

x (1) и x (4)

x (2) и x (4)

Решение:

При построении модели множественной регрессии необходимо исключить возможность существования тесной линейной зависимости между независимыми (объясняющими) переменными, которая ведет к проблеме мультиколлинеарности. При этом осуществляют проверку коэффициентов линейной корреляции для каждой пары независимых (объясняющих) переменных. Эти значения отражены в матрице парных коэффициентов линейной корреляции. Считается, что наличие значений коэффициентов парной корреляции между объясняющими переменными, превышающих по абсолютной величине 0,7, отражает тесную связь между этими переменными (теснота связи с переменной y в данном случае не рассматривается). Такие независимые переменные называются коллинеарными. Если значение коэффициента парной корреляции между объясняющими переменными не превышает по абсолютной величине 0,7, то такие объясняющие переменные не являются коллинеарными. Рассмотрим значения парных коэффициентов межфакторной корреляции: между x (1) и x (2) значение равно 0,45; между x (1) и x (3) – равно 0,82; между x (1) и x (4) – равно 0,94; между x (2) и x (3) – равно 0,3; между x (2) и x (4) – равно 0,7; между x (3) и x (4) – равно 0,12. Таким образом, не превышают 0,7 значения , , . Следовательно, коллинеарными не являются факторы x (1) и x (2) , x (2) и x (3) , x (3) и x (4) . Из последних перечисленных пар в вариантах ответов присутствует пара x (2) и x (3) – это верный вариант ответа. Для остальных пар: x (1 и x (3) , x (1) и x (4) , x (2) и x (4) – значения парных коэффициентов межфакторной корреляции превышают 0,7, и эти факторы являются коллинеарными.

Тема 3: Фиктивные переменные

1. Дана таблица исходных данных для построения эконометрической регрессионной модели:

Фиктивными переменными не являются

стаж работы

производительность труда

уровень образования

уровень квалификации работника

Решение:

При построении регрессионной модели может возникнуть ситуация, когда необходимо включить в уравнение помимо количественных переменных переменные, отражающие некоторые атрибутивные признаки (пол, образование, регион и т.п.). Такого рода качественные переменные называются «фиктивными» (dummy) переменными. Для построения указанной в постановке задания модели используются фиктивные переменные: уровень образования и уровень квалификации работника. Остальные переменные не являются фиктивными, из предложенных вариантов это стаж работы и производительность труда.

2. При исследовании зависимости потребления мяса от уровня дохода и пола потребителя можно рекомендовать …

использовать фиктивную переменную – пол потребителя

разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола

использовать фиктивную переменную – уровень дохода

исключить из рассмотрения пол потребителя, так как данный фактор нельзя измерить количественным образом

Решение:

При построении регрессионной модели может возникнуть ситуация, когда необходимо включить в уравнение помимо количественных переменных переменные, отражающие некоторые атрибутивные признаки (пол, образование, регион и т.п.). Такого рода качественные переменные называются «фиктивными» (dummy) переменными. Они отражают неоднородность исследуемой статистической совокупности и используются для более качественного моделирования зависимостей в таких неоднородных объектах наблюдения. При моделировании отдельных зависимостей по неоднородным данным можно также воспользоваться способом разделения всей совокупности неоднородных данных на несколько отдельных совокупностей, количество которых равно количеству состояний dummy-переменной. Таким образом правильными вариантами ответов являются: «использовать фиктивную переменную – пол потребителя» и «разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола».

3. Изучается зависимость цены квартиры (у ) от ее жилой площади (х ) и типа дома. В модель включены фиктивные переменные, отражающие рассматриваемые типы домов: монолитный, панельный, кирпичный. Получено уравнение регрессии: ,
где ,
Частными уравнениями регрессии для кирпичного и монолитного являются …

для типа дома кирпичный

для типа дома монолитный

для типа дома кирпичный

для типа дома монолитный

Решение:

Требуется узнать частное уравнение регрессии для кирпичного и монолитного домов. Для кирпичного дома значения фиктивных переменных следующие , . Уравнение примет вид: или для типа дома кирпичный.
Для монолитного дома значения фиктивных переменных следующие , . Уравнение примет вид
или для типа дома монолитный.

1. ПОСТРОИМ МАТРИЦУ КОЭФФИЦИЕНТОВ ПАРНОЙ КОРРЕЛЯЦИИ.

Для этого рассчитаем коэффициенты парной корреляции по формуле:

Необходимые расчеты представлены в таблице 9.

-

связь между выручкой предприятия Y и объемом капиталовложений Х 1 слабая и прямая;

-

связи между выручкой предприятия Y и основными производственными фондами Х 2 практически нет;

-

связь между объемом капиталовложений Х 1 и основными производственными фондами Х 2 тесная и прямая;

Таблица 9

Вспомогательная таблица для расчета коэффициентов парных корреляций

t Y X1 X2

(y-yср)*
(x1-x1ср)

(y-yср)*
(x2-x2ср)

(х1-х1ср)*
(x2-x2ср)

1998 3,0 1,1 0,4 0,0196 0,0484 0,0841 0,0308 0,0406 0,0638
1999 2,9 1,1 0,4 0,0576 0,0484 0,0841 0,0528 0,0696 0,0638
2000 3,0 1,2 0,7 0,0196 0,0144 1E-04 0,0168 -0,0014 -0,0012
2001 3,1 1,4 0,9 0,0016 0,0064 0,0441 -0,0032 -0,0084 0,0168
2002 3,2 1,4 0,9 0,0036 0,0064 0,0441 0,0048 0,0126 0,0168
2003 2,8 1,4 0,8 0,1156 0,0064 0,0121 -0,0272 -0,0374 0,0088
2004 2,9 1,3 0,8 0,0576 0,0004 0,0121 0,0048 -0,0264 -0,0022
2005 3,4 1,6 1,1 0,0676 0,0784 0,1681 0,0728 0,1066 0,1148
2006 3,5 1,3 0,4 0,1296 0,0004 0,0841 -0,0072 -0,1044 0,0058
2007 3,6 1,4 0,5 0,2116 0,0064 0,0361 0,0368 -0,0874 -0,0152
Σ 31,4 13,2 6,9 0,684 0,216 0,569 0,182 -0,036 0,272
Средн. 3,14 1,32 0,69

Также матрицу коэффициентов парных корреляций можно найти в среде Excel с помощью надстройки АНАЛИЗ ДАННЫХ, инструмента КОРРЕЛЯЦИЯ.

Матрица коэффициентов парной корреляции имеет вид:

Y X1 X2
Y 1
X1 0,4735 1
X2 -0,0577 0,7759 1

Матрица парных коэффициентов корреляции показывает, что результативный признак у (выручка) имеет слабую связь с объемом капиталовложений х 1 , а с Размером ОПФ связи практически нет. Связь между факторами в модели оценивается как тесная, что говорит о их линейной зависимости, мультиколлинеарности.

2. ПОСТРОИТЬ ЛИНЕЙНУЮ МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

Параметры модели найдем с помощью МНК. Для этого составим систему нормальных уравнений.

Расчеты представлены в таблице 10.

Решим систему уравнений, используя метод Крамера:

Таблица 10

Вспомогательные вычисления для нахождения параметров линейной модели множественной регрессии

y
3,0 1,1 0,4 1,21 0,44 0,16 3,3 1,2
2,9 1,1 0,4 1,21 0,44 0,16 3,19 1,16
3,0 1,2 0,7 1,44 0,84 0,49 3,6 2,1
3,1 1,4 0,9 1,96 1,26 0,81 4,34 2,79
3,2 1,4 0,9 1,96 1,26 0,81 4,48 2,88
2,8 1,4 0,8 1,96 1,12 0,64 3,92 2,24
2,9 1,3 0,8 1,69 1,04 0,64 3,77 2,32
3,4 1,6 1,1 2,56 1,76 1,21 5,44 3,74
3,5 1,3 0,4 1,69 0,52 0,16 4,55 1,4
3,6 1,4 0,5 1,96 0,7 0,25 5,04 1,8
31,4 13,2 6,9 17,64 9,38 5,33 41,63 21,63

Линейная модель множественной регрессии имеет вид:

Если объем капиталовложений увеличить на 1 млн. руб., то выручка предприятия увеличиться в среднем на 2,317 млн. руб. при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1 млн. руб., то выручка предприятия уменьшиться в среднем на 1,171 млн. руб. при неизменном объеме капиталовложений.

3. РАССЧИТАЕМ:

коэффициент детерминации:

67,82% изменения выручки предприятия обусловлено изменением объема капиталовложений и основных производственных фондов, на 32,18% - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f. 1 = k = 2 (количество факторов), числе степеней свободы d.f. 2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как F расч. = 7,375 > F табл. = 4.74, то уравнение регрессии в целом можно считать статистически значимым.

Рассчитанные показатели можно найти в среде Excel с помощью надстройки АНАЛИЗА ДАННЫХ, инструмента РЕГРЕССИЯ.


Таблица 11

Вспомогательные вычисления для нахождения средней относительной ошибки аппроксимации

y А
3,0 1,1 0,4 2,97 0,03 0,010
2,9 1,1 0,4 2,97 -0,07 0,024
3,0 1,2 0,7 2,85 0,15 0,050
3,1 1,4 0,9 3,08 0,02 0,007
3,2 1,4 0,9 3,08 0,12 0,038
2,8 1,4 0,8 3,20 -0,40 0,142
2,9 1,3 0,8 2,96 -0,06 0,022
3,4 1,6 1,1 3,31 0,09 0,027
3,5 1,3 0,4 3,43 0,07 0,019
3,6 1,4 0,5 3,55 0,05 0,014
0,353

среднюю относительную ошибку аппроксимации

В среднем расчетные значения отличаются от фактических на 3,53 %. Ошибка небольшая, модель можно считать точной.

4. Построить степенную модель множественной регрессии

Для построения данной модели прологарифмируем обе части равенства

lg y = lg a + β 1 ∙ lg x 1 + β 2 ∙ lg x 2 .

Сделаем замену Y = lg y, A = lg a, X 1 = lg x 1 , X 2 = lg x 2 .

Тогда Y = A + β 1 ∙ X 1 + β 2 ∙ X 2 – линейная двухфакторная модель регрессии. Можно применить МНК.

Расчеты представлены в таблице 12.

Таблица 12

Вспомогательные вычисления для нахождения параметров степенной модели множественной регрессии

y lg y
3,0 1,1 0,4 0,041 -0,398 0,477 0,002 -0,016 0,020 0,158 -0,190
2,9 1,1 0,4 0,041 -0,398 0,462 0,002 -0,016 0,019 0,158 -0,184
3,0 1,2 0,7 0,079 -0,155 0,477 0,006 -0,012 0,038 0,024 -0,074
3,1 1,4 0,9 0,146 -0,046 0,491 0,021 -0,007 0,072 0,002 -0,022
3,2 1,4 0,9 0,146 -0,046 0,505 0,021 -0,007 0,074 0,002 -0,023
2,8 1,4 0,8 0,146 -0,097 0,447 0,021 -0,014 0,065 0,009 -0,043
2,9 1,3 0,8 0,114 -0,097 0,462 0,013 -0,011 0,053 0,009 -0,045
3,4 1,6 1,1 0,204 0,041 0,531 0,042 0,008 0,108 0,002 0,022
3,5 1,3 0,4 0,114 -0,398 0,544 0,013 -0,045 0,062 0,158 -0,217
3,6 1,4 0,5 0,146 -0,301 0,556 0,021 -0,044 0,081 0,091 -0,167
31,4 13,2 6,9 1,178 -1,894 4,955 0,163 -0,165 0,592 0,614 -0,943

Решаем систему уравнений применяя метод Крамера.

Степенная модель множественной регрессии имеет вид:

В степенной функции коэффициенты при факторах являются коэффициентами эластичности. Коэффициент эластичности показывает на сколько процентов измениться в среднем значение результативного признака у, если один из факторов увеличить на 1 % при неизменном значении других факторов.

Если объем капиталовложений увеличить на 1%, то выручка предприятия увеличиться в среднем на 0,897% при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1%, то выручка предприятия уменьшиться на 0,226% при неизменных капиталовложениях.

5. РАССЧИТАЕМ:

коэффициент множественной корреляции:

Связь выручки предприятия с объемом капиталовложений и основными производственными фондами тесная.

Таблица 13

Вспомогательные вычисления для нахождения коэффициента множественной корреляции, коэффициента детерминации, ср.относ.ошибки аппроксимации степенной модели множественной регрессии

Y

(Y-Y расч.) 2

A
3,0 1,1 0,4 2,978 0,000 0,020 0,007
2,9 1,1 0,4 2,978 0,006 0,058 0,027
3,0 1,2 0,7 2,838 0,026 0,020 0,054
3,1 1,4 0,9 3,079 0,000 0,002 0,007
3,2 1,4 0,9 3,079 0,015 0,004 0,038
2,8 1,4 0,8 3,162 0,131 0,116 0,129
2,9 1,3 0,8 2,959 0,003 0,058 0,020
3,4 1,6 1,1 3,317 0,007 0,068 0,024
3,5 1,3 0,4 3,460 0,002 0,130 0,012
3,6 1,4 0,5 3,516 0,007 0,212 0,023
31,4 13,2 6,9 0,198 0,684 0,342

коэффициент детерминации:

71,06% изменения выручки предприятия в степенной модели обусловлено изменением объема капиталовложений и основных производственных фондов, на 28,94 % - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f. 1 = k = 2, числе степеней свободы d.f. 2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как F расч. = 8,592 > F табл. = 4.74, то уравнение степенной регрессии в целом можно считать статистически значимым.

Посадка невозможна, в каком из реализуемых случаев расход топлива меньше. Получить программу оптимального управления, когда до некоторого момента t1 управление отсутствует u*=0, а начиная с t=t1, управление равно своему максимальному значению u*=umax, что соответствует минимальному расходу топлива. 6.) Решить каноническую систему уравнений, рассматривая ее для случаев, когда и управление...

К составлению математических моделей. Если математическая модель - это диагноз заболевания, то алгоритм - это метод лечения. Можно выделить следующие основные этапы операционного исследования: наблюдение явления и сбор исходных данных; постановка задачи; построение математической модели; расчет модели; тестирование модели и анализ выходных данных. Если полученные результаты не удовлетворяют...

Математических построений по аналогии с выявляет в плоском приближении продольно-скалярную электромагнитную волну с электрической - (28) и магнитной (29) синфазными составляющими. Математическая модель безвихревой электродинамики характеризуется скалярно-векторной структурой своих уравнений. Основополагающие уравнения безвихревой электродинамики сведены в таблице 1. Таблица 1 , ...



Новое на сайте

>

Самое популярное