Домой Детская стоматология Самое длинное местоимение в русском языке. Московский государственный университет печати

Самое длинное местоимение в русском языке. Московский государственный университет печати

Скалярная величина Т, равная сумме кинетических энергий всех точек системы, называется кинетической энергией системы.

Кинетическая энергия является характеристикой поступательного и вращательного движения системы. На ее изменение влияет действие внешних сил и так как она является скаляром, то не зависит от направления движения частей системы.

Найдем кинетическую энергию при различных случаях движения:

1. Поступательное движение

Скорости всех точек системы равны скорости центра масс . Тогда

Кинетическая энергия системы при поступательном движении равна половине произведения массы системы на квадрат скорости центра масс.

2. Вращательное движение (рис. 77)

Скорость любой точки тела: . Тогда

или используя формулу (15.3.1):

Кинетическая энергия тела при вращении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости.

3. Плоскопараллельное движение

При данном движении кинетическая энергия складывается из энергии поступательного и вращательных движений

Общий случай движения дает формулу, для вычисления кинетической энергии, аналогичную последней.

Определение работы и мощности мы сделали в параграфе 3 главы 14. Здесь же мы рассмотрим примеры вычисления работы и мощности сил действующих на механическую систему.

1. Работа сил тяжести . Пусть , координаты начального и конечного положения точки k тела. Работа силы тяжести действующих на эту частицу веса будет . Тогда полная работа:

где Р - вес системы материальных точек, - вертикальное перемещение центра тяжести С.

2. Работа сил, приложенных к вращающемуся телу .

Согласно соотношению (14.3.1) можно записать , но ds согласно рисунку 74, в силу бесконечной малости можно представить в виде - бесконечно малый угол поворота тела. Тогда

Величина называется вращающим моментом.

Формулу (19.1.6) перепишем как

Элементарная работа равна произведению вращательного момента на элементарный поворот .

При повороте на конечный угол имеем:

Если вращательный момент постоянен , то

а мощность определим из соотношения (14.3.5)

как произведение вращающего момента на угловую скорость тела.

Теорема об изменении кинетической энергии доказанная для точки (§ 14.4) будет справедлива для любой точки системы

Составляя такие уравнения для всех точек системы и складывая их почленно получаем:

или, согласно (19.1.1):

что является выражением теоремы о кинетической энергии системы в дифференциальной форме.

Проинтегрировав (19.2.2) получаем:

Теорему об изменении кинетической энергии в конечном виде: изменение кинетической энергии системы при некотором ее конечном перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил.

Подчеркнем, что внутренние силы не исключаются. Для неизменяемой системы сумма работ всех внутренних сил равна нулю и

Если связи, наложенные на систему, не изменяются со временем, то силы, как внешние так и внутренние, можно разделить на активные и реакции связей, и уравнение (19.2.2) теперь можно записать:

В динамике вводится такое понятие как "идеальная" механическая система. Это такая система, наличие связей у которой не влияет на изменение кинетической энергии, то есть

Такие связи, не изменяющиеся со временем и сумма работ которых на элементарном перемещении равна нулю, называются идеальными, и уравнение (19.2.5) запишется:

Потенциальной энергией материальной точки в данном положении М называется скалярная величина П, равная той работе, которую произведут силы поля при перемещении точки из положения М в нулевое

П = А (мо) (19.3.1)

Потенциальная энергия зависит от положения точки М, то есть от ее координат

П = П(х,у,z) (19.3.2)

Поясним здесь, что силовым полем называется часть пространственного объема, в каждой точке которого на частицу действует определенная по модулю и направлению сила, зависящая от положения частицы, то есть от координат х, у, z. Например, поле тяготения Земли.

Функция U от координат, дифференциал которой равен работе, называется силовой функцией . Силовое поле, для которого существует силовая функция, называется потенциальным силовым полем , а силы действующие в этом поле, - потенциальными силами .

Пусть нулевые точки для двух силовых функций П(х,у,z) и U(x,y,z) совпадают.

По формуле (14.3.5) получаем , т.е. dA = dU(x,y,z) и

где U - значение силовой функции в точке М. Отсюда

П(x,y,z) = -U(x,y,z) (19.3.5)

Потенциальная энергия в любой точке силового поля равна значению силовой функции в этой точке, взятому с обратным знаком.

То есть, при рассмотрении свойств силового поля вместо силовой функции можно рассматривать потенциальную энергию и, в частности, уравнение (19.3.3) перепишется как

Работа потенциальной силы равна разности значений потенциальной энергии движущейся точки в начальном и конечном положении.

В частности работа силы тяжести:

Пусть все силы, действующие на систему, будут потенциальными. Тогда для каждой точки k системы работа равна

Тогда для всех сил, как внешних, так и внутренних будет

где - потенциальная энергия всей системы.

Подставляем эти суммы в выражение для кинетической энергии (19.2.3):

или окончательно:

При движении под действием потенциальных сил сумма кинетической и потенциальной энергии системы в каждом ее положении остается величиной постоянной. Это закон сохранения механической энергии.

Груз массой 1 кг совершает свободные колебания согласно закону х = 0,1sinl0t. Коэффициент жесткости пружины с = 100 Н/м. Определить полную механическую энергию груза при х = 0,05м, если при х= 0 потенциальная энергия равна нулю . (0,5)

Груз массой m = 4 кг, опускаясь вниз, приводит с помощью нити во вращение цилиндр радиуса R = 0,4 м. Момент инерции цилиндра относительно оси вращения I = 0,2 . Определить кинетическую энергию системы тел в момент времени, когда скорость груза v = 2м/с . (10,5)

Установите с помощью движков регуляторов значения массы тела m , угла наклона плоскости a , внешней силы F вн , коэффициента трения m и ускорения а , указанных в табл.1 для вашей бригады.

Одновременно включите секундомер и нажмите кнопку "Старт". Выключите секундомер в момент остановки тела в конце наклонной плоскости.

Проделайте этот опыт 10 раз и результаты измерения времени соскальзывания тела с наклонной плоскости запишите в табл. 2.

ТАБЛИЦА 1. Исходные параметры опыта

№ бриг.

m , кг

m

0,10

a , град

F вн, Н

а, м/с 2

ТАБЛИЦА 2. Результаты измерений и расчётов

W п = - потенциальную энергию тела в верхней точке наклонной плоскости;

Д) - работу силы трения на участке спуска;

Е) - работу внешней силы на участке спуска

и запишите эти значения в соответствующие строки табл. 2. Вычислите средние значения этих параметров и запишите их в столбец «средние значения» табл.2.

Используя формулу (7) проверьте выполнение закона сохранения механической энергии при движении тела по наклонной плоскости. Рассчитайте погрешности и сделайте выводы по результатам проведённых опытов.

Вопросы и задания для самоконтроля

1.В чём заключается закон сохранения механической энергии?

2.Для каких систем выполняется закон сохранения механической энергии?

3.В чём состоит различие между понятиями энергии и работы?

4.Чем обусловлено изменение потенциальной энергии?

5.Чем обусловлено изменение кинетической энергии?

6.Необходимо ли выполнение условия замкнутости механической системы тел для выполнения закона сохранения механической энергии?

7.Какие силы называются консервативными?

8.Какие силы называются диссипативными?

9.Тело медленно втаскивают в гору. Зависят ли от формы профиля горы: а) работа силы тяжести; б) работа силы трения? Начальная и конечная точки перемещения тела фиксированы.

10.Тело соскальзывает с вершины наклонной плоскости без начальной скорости. Зависит ли работа силы трения на всём пути движения тела до остановки на горизонтальном участке: а) от угла наклона плоскости; б) от коэффициента трения?

11.По наклонной плоскости с одной и той же высоты соскальзывают два тела: одно массой m , другое массой 2 m . Какое из тел пройдёт до остановки по горизонтальному участку путь больший и во сколько раз? Коэффициенты трения для обоих тел одинаковы.

12.Санки массой m скатились с горы высотой Н и остановились на горизонтальном участке. Какую работу необходимо совершить для того, чтобы поднять их на гору по линии скатывания.

13.С одинаковой начальной скоростью тело проходит: а) впадину; б) горку, имеющие одинаковые дуги траекторий и одинаковые коэффициенты трения. Сравните скорости тела в конце пути в обоих случаях.

Литература

1. Трофимова Т.И. Курс физики. Гл.3, §§12,13.

№ изм.

Среднее

значение

Погр.

t , с

v , м/с

S, м

W к , Дж

W п , Дж

A тр, Дж

A вн , Дж

W полн , Дж

Теорема о кинетической энергии точки в дифференциальной форме

Умножая скалярно обе части уравнения движения материальной точки на элементарное перемещение точки получим

или, так как , то

Скалярная величина или половина произведения массы точки на квадрат ее скорости называется кинетической энергией точки или живой силой точки.

Последнее равенство составляет содержание теоремы о кинетической энергии точки в дифференциальной форме, которая гласит: дифференциал кинетической энергии точки равен элеменарной работе, действующей на точку силы.

Физический смысл теоремы о кинетической энергии заключается в том, что работа, производимая действующей на точку силой, накапливается в ней как кинетическая энергия движения.

Теорема о кинетической энергии точки в интегральной форме

Пусть точка переместилась из положения Л в положение В, пройдя по своей траектории конечную дугу АВ (рис. 113). Интегрируя в пределах от Л до Б равенство:

где соответственно скорости точки в положениях А и В.

Последнее равенство составляет содержание теоремы о кинетической энергии точки в интегральной форме, которая гласит: изменение кинетической энергии точки за некоторый промежуток времени равно работе, совершенной за то же время действующей на нее силой.

Полученная теорема справедлива при движении точки под действием любой силы. Однако, как указывалось, для вычисления полной работы силы нужно в общем случае знать уравнения движения точки.

Поэтому теорема о кинетической энергии, вообще говоря, не дает первого интеграла уравнений движения.

Интеграл энергии

Теорема о кинетической энергии дает первый интеграл урав нений движения точки, если полная работа силы может быть определена, не прибегая к уравнениям движения. Последнее, возможно, как ранее указывалось, если сила, действующая на точку, принадлежит к силовому полю. В этом случае достаточно знать только траекторию точки. Пусть траектория точки будет некоторая кривая, тогда координаты ее точек можно выразить через дугу траектории, и, следовательно, сила зависящая от координат точки, может быть выражена через

и теорема о кинетической энергии дает первый интеграл вида

где - дуги траектории, соответствующие точкам А и - проекция силы на касательную к траектории (рис. 113).

Потенциальная энергия и закон сохранения механической энергии точки

Особый интерес представляет движение точки в потенциальном поле, так как теорема о кинетической энергии дает при этом весьма важный интеграл уравнений движения.

В потенциальном поле полная работа силы равна разности значений силовой функции в конце и в начале пути:

Следовательно, теорема о кинетической энергии в этом случае записывается в виде:

Силовая функция, взятая с обратным знаком называется потенциальной энергией точки и обозначается буквой П:

Потенциальная энергия, так же как и силовая функция, задается с точностью до произвольной постоянной, значение которой определяется выбором нулевой поверхности уровня. Сумма кинетической и потенциальной энергии точки называется полной механической энергией точки.

Теорема о кинетической энергии точки, если сила принадлежит к потенциальному полю, записывается в виде:

где - значения потенциальной энергии, соответствующие точкам А и В. Полученное уравнение составляет содержание закона сохранения механической энергии для точки, который гласит: при движении в потенциальном поле сумма кинетической и потенциальной энергии точки остается постоянной.

Так как закон сохранения механической энергии справедлив только для сил, принадлежащих потенциальным полям, то силы такого поля называются консервативными (от латинского глагола conservare - сохранять), чем подчеркивается выполнение в этом случае сформулированного закона. Заметим, что если понятие кинетической энергии имеет в своем определении известные физические основания, то понятие потенциальной энергии этого лишено. Понятие потенциальной энергии в известном смысле является фиктивной величиной, которая определяется так, что изменения ее значения в точности соответствуют изменениям кинетической энергии. Введение этой величины, связанной с движением, помогает описанию движения и благодаря этому играет существенную роль в так называемом энергетическом описании движения, разрабатываемый аналитической механикой. В последнем и заключается смысл введения этой величины.

Работа равнодействующей всех сил , приложенных к телу, равна изменению кинетической энергии тела.

Эта теорема верна не только для поступательного движения твердого тела, но и в случае его произвольного движения.

Кинетической энергией обладают только движущиеся тела, поэтому ее называют энергией движения.

§ 8. Консервативные (потенциальные) силы.

Поле консервативных сил

Опр.

Силы, работа которых не зависит от пути, по которому двигалось тело, а определяется только начальным и конечным положениями тела, называются консервативными (потенциальными) силами.

Опр.

Поле сил – область пространства, в каждой точке которого на тело, помещенное туда, действует сила, закономерно меняющаяся от точки к точке пространства.

Опр.

Поле, не изменяющееся со временем, называется стационарным.

Можно доказать следующие 3 утверждения

1) Работа консервативных сил по любому замкнутому пути равна 0.

Доказательство:

2) Однородное поле сил консервативно.

Опр.

Поле называется однородным, если во всех точках поля силы, действующие на тело помещенное туда, одинаковы по модулю и направлению.

Доказательство:

3) Поле центральных сил, в котором величина силы зависит только от расстояния до центра, консервативно.

Опр.

Поле центральных сил – силовое поле, в каждой точке которого на точечное тело, движущееся в нем, действует сила, направленная вдоль линии, проходящей через одну и ту же неподвижную точку – центр поля.

В общем случае такое поле центральных сил не является консервативным. Если же в поле центральных сил величина силы зависит только от расстояния до центра силового поля (О), т.е. , то такое поле является консервативным (потенциальным).

Доказательство:

где - первообразная .

§ 9. Потенциальная энергия.

Связь силы и потенциальной энергии

в поле консервативных сил

Полем консервативных сил выберем начало координат, т.О.

Потенциальная энергия тела в поле консервативных сил. Эта функция определяется однозначно (зависит только от координат), т.к. работа консервативных сил не зависит от вида пути.

Найдем связь в поле консервативных сил при перемещении тела из точки 1 в точку 2.

Работа консервативных сил равна изменению потенциальной энергии с обратным знаком.

Потенциальная энергия тела поля консервативных сил есть энергия, обусловленная наличием силового поля, возникающего в результате определенного взаимодействия данного тела с внешним телом (телами), которое, как говорят, и создает силовое поле.

Потенциальная энергия поля консервативных сил характеризует способность тела совершить работу и численно равна работе консервативных сил по перемещению тела в начало координат (или в точку с нулевой энергией). Она зависит от выбора нулевого уровня и может быть отрицательной. В любом случае , а значит и для элементарной работы справедливо , т.е. или , где - проекция силы на направление движения или элементарное перемещение. Следовательно, . Т.к. мы можем перемещать тело в любом направлении, то для любого направления справедливо . Проекция консервативной силы на произвольное направление равна производной потенциальной энергии по этому направлению с обратным знаком.

Учитывая разложение векторов и по базису , , получим, что

С другой стороны из математического анализа известно, что полный дифференциал функции нескольких переменных равен сумме произведений частных производных по аргументам на дифференциалы аргументов, т.е. , а значит, из соотношения получим

Для более компактной записи данных соотношений можно использовать понятие градиента функции.

Опр.

Градиентом некоторой скалярной функции координат называется вектор с координатами, равными соответствующим частным производным этой функции.

В нашем случае

Опр.

Эквипотенциальной поверхностью называется геометрическое место точек в поле консервативных сил, значения потенциальной энергии в которых одинаковы, т.е. .

Т.к. из определения эквипотенциальной поверхности следует, что для точек этой поверхности, то , как производная константы, следовательно .

Таким образом, консервативная сила всегда перпендикулярна эквипотенциальной поверхности и направлена в строну убыли потенциальной энергии. (П 1 >П 2 >П 3).

§ 10. Потенциальная энергия взаимодействия.

Консервативные механические системы

Рассмотрим систему их двух взаимодействующих частиц. Пусть силы их взаимодействия центральные и величина силы зависит от расстояния между частицами (такими силами являются гравитационные и электрические кулоновские силы). Понятно, что силы взаимодействия двух частиц – внутренние.

Учитывая третий закон Ньютона (), получим , т.е. работа внутренних сил взаимодействия двух частиц определяется изменением расстояния между ними.

Такая же работа была бы совершена, если бы первая частица покоилась в начале координат, а вторая – получила перемещение , равное приращению ее радиус-вектора, т.е работу, совершаемую внутренними силами можно вычислять, считая одну частицу неподвижной, а вторую – движущейся в поле центральных сил, величина которых однозначно определяется расстоянием между частицами. В §8 мы доказали, что поле таких сил (т.е. поле центральных сил, в котором величина силы зависит только от расстояния до центра) консервативно, а значит, их работу можно рассматривать как убыль потенциальной энергии (определяемой, согласно §9, для поля консервативных сил).

В рассматриваемом случае эта энергия обусловлена взаимодействием двух частиц, составляющих замкнутую систему. Ее именуют потенциальной энергией взаимодействия (или взаимной потенциальной энергией). Она также зависит от выбора нулевого уровня и может быть отрицательной.

Опр.

Механическая система твердых тел, внутренние силы между которыми консервативны, называется консервативной механической системой.

Можно показать, что потенциальная энергия взаимодействия консервативной системы из N частиц слагается из потенциальных энергий взаимодействия частиц, взятых попарно, что можно представить.

Где - потенциальная энергия взаимодействия двух частиц i-ой и j-ой. Индексы i и j в сумме принимают независимые друг от друга значения 1,2,3, … , N. Учитывая, что одна и та же потенциальная энергия взаимодействия i-ой и j-ой частиц друг с другом, то при суммировании энергия будет умножаться на 2, вследствие чего появляется коэффициент перед суммой. В общем случае потенциальная энергия взаимодействия системы из N частиц будет зависеть от положения или координат всех частиц . Нетрудно видеть, что потенциальная энергия частицы в поле консервативных сил есть разновидность потенциальной энергии взаимодействия системы частиц, т.к. силовое поле есть результат некоторого взаимодействия тел друг с другом.

§ 11. Закон сохранения энергии в механике.

Пусть твердое тело движется поступательно под действием консервативных и неконсервативных сил, т.е. общий случай. Тогда равнодействующая всех сил, действующих на тело . Работа равнодействующей всех сил в этом случае .

По теореме о кинетической энергии , а также учитывая, что , получим

Полная механическая энергия тела

Если , то . Это и есть математическая запись закона сохранения энергии в механике для отдельного тела.

Формулировка закона сохранения энергии:

Полная механическая энергия тела не изменяется в отсутствии работы неконсервативных сил.

Для механической системы из N частиц нетрудно показать, что (*) имеет место.

При этом

Первая сумма здесь – суммарная кинетическая энергия системы частиц.

Вторая – суммарная потенциальная энергия частиц во внешнем поле консервативных сил

Третья – потенциальная энергия взаимодействия частиц системы друг с другом.

Вторая и третья суммы представляют собой полную потенциальную энергию системы.

Работа неконсервативных сил состоит из двух слагаемых, представляемых собой работу внутренних и внешних неконсервативных сил .

Также как и в случае движения отдельного тела, для механической системы из N тел, если , то , и закон сохранения энергии в общем случае для механической системы гласит:

Полная механическая энергия системы частиц, находящихся только под действием консервативных сил, сохраняется.

Таким образом, при наличии неконсервативных сил полная механическая энергия не сохраняется.

Неконсервативными силами являются, например, сила трения , сила сопротивления и другие силы, действия которых вызывают дессинацию энергии (переход механической энергии в теплоту).

Силы, приводящие к дессинации называются дессинативными. Некоторые силы не обязательно являются дессинативными.

Закон сохранения энергии имеет всеобщий характер и применим не только к механическим явлениям, но и ко всем процессам в природе. Полное количество энергии в изолированной системе тел и полей всегда остается постоянным. Энергия лишь может переходить из одной формы в другую.

С учетом этого равенства

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

A =Ek 2−Ek 1=m υ 22−0=m υ 22 .

42) Потенциальные поля

Потенциальное поле

консервативное поле, векторное поле, циркуляция которого вдоль любой замкнутой траектории равна нулю. Если П. п. - силовое поле, то это означает равенство нулю работы сил поля вдоль замкнутой траектории. Для П. п. а (М ) существует такая однозначная функция u (М )(Потенциал поля), что а = gradu (см. Градиент). Если П. п. задано в односвязной области Ω, то потенциал этого поля может быть найден по формуле

в которой AM - любая гладкая кривая, соединяющая фиксированную точку А из Ω с точкой М, t - единичный вектор касательной кривой AM и / - длина дуги AM, отсчитываемая от точки А. Если а (М ) - П. п., то rot a = 0 (см. Вихрь векторного поля). Обратно, если rot а = 0 и поле задано в односвязной области и дифференцируемо, то а (М ) - П. п. Потенциальными являются, например, электростатическое поле, поле тяготения, поле скоростей при безвихревом движении.

43) Потенциальная энергия

Потенциальная энергия - скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Другое определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжианесистемы, и описывающая взаимодействие элементов системы. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

Единицей измерения энергии в СИ является Джоуль.

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называетсянормировкой потенциальной энергии .

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где E p - потенциальная энергия тела, m - масса тела, g - ускорение свободного падения, h - высота положения центра масс тела над произвольно выбранным нулевым уровнем.

44) Связь силы и потенциальной энергии

Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы , действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии . Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Для установления этой связи вычислим элементарную работу , совершаемую силами поля при малом перемещении тела, происходящем вдоль произвольно выбранного направления в пространстве, которое обозначим буквой . Эта работа равна

где - проекция силы на направление .

Поскольку в данном случае работа совершается за счет запаса потенциальной энергии , она равна убыли потенциальной энергии на отрезке оси :

Из двух последних выражений получаем

Последнее выражение дает среднее значение на отрезке . Чтобы

получить значение в точке нужно произвести предельный переход:

в математике вектор ,

где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом . Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком

45) Закон сохранения механической энергии



Новое на сайте

>

Самое популярное