Домой Стоматит Чувствительность мышц. Мышечная чувствительность

Чувствительность мышц. Мышечная чувствительность

Мышечное чувство. Закройте глаза, сосредоточьтесь. Теперь опишите, в каком состоянии находится ваше тело. Да, вы чувствуете, что стоите или лежите, вытянута или согнута ваша рука или нога. С закрытыми глазами вы можете коснуться рукой любой части вашего тела. Все дело в том, что от рецепторов мышц, сухожилий, суставных капсул, связок постоянно идут импульсы, информирующие головной мозг о состоянии органов опорно-двигательного аппарата. При сокращении или растяжении мышц в специальных рецепторах возникает возбуждение, которое через средний и промежуточный отделы головного мозга поступает в двигательную зону коры больших полушарий, а именно в переднюю центральную извилину лобной доли. Двигательный анализатор - древнейший из органов чувств, так как нервные и мышечные клетки развивались у животных почти одновременно.

Тактильный анализатор. Осязание - это комплекс ощущений, возникающих при раздражении рецепторов кожи. Рецепторы прикосновения (тактильные) бывают двух видов: одни из них очень чувствительны и возбуждаются при вдавливании кожи на руке всего на 0,1 мкм, другие - лишь при значительном давлении. В среднем на 1 см 2 приходится около 25 тактильных рецепторов. Они разбросаны по телу очень неравномерно: например, в коже, покрывающей голень, на 1 см 2 находится около 10 рецепторов, а на такой же площади кожи большого пальца- около 120 таких рецепторов. Очень много рецепторов прикосновения на языке и ладонях. Кроме того, к прикосновениям чувствительны волоски, покрывающие 95% нашего тела. У основания каждого волоска находится тактильный рецептор. Информация от всех этих рецепторов собирается в спинном мозге и по проводящим путям белого вещества поступает в ядра таламуса, а оттуда - в высший центр тактильной чувствительности - область задней центральной извилины коры больших полушарий.

Кроме рецепторов прикосновения, в коже расположены рецепторы, чувствительные к холоду и теплу. Холодовых рецепторов на теле человека около 250тыс., тепловых гораздо меньше - около 30 тыс. Эти рецепторы обладают избирательностью: они способны различать только тот сигнал, на который настроены, т. е. или тепло, или холод. Как и другие ощущения, осязание формируется у человека не сразу. Прикосновение горячим или острым предметом младенец чувствует с первых дней жизни, но, по-видимому, это - болевое ощущение. А вот на слабое прикосновение к коже он начинает реагировать только через несколько недель.

Обонятельный анализатор. Обоняние обеспечивает восприятие запахов. Обонятельные рецепторные клетки расположены в слизистой оболочке верхней части носовой полости. Их около 100 млн. Каждая из этих клеток имеет множество коротких обонятельных волосков, которые выходят в полость носа. Именно с поверхностью этих волосков и взаимодействуют молекулы пахучих веществ. Общая площадь, занимаемая обонятельными рецепторами, составляет у человека 3-5 см 2 (для сравнения: у собаки - около 65 см 2 , у акулы - 130 см 2). Чувствительность обонятельных волосков у человека не очень велика. Считается, что обоняние собаки приблизительно в 15-20 раз острее, чем у человека.

Сигнал от волосков проходит к телу обонятельной клетки и дальше - в мозг человека. Путь информации о запахах в мозг очень короткий. Импульсы от обонятельного эпителия поступают, минуя средний и промежуточный мозг, прямо на внутреннюю поверхность височных долей, где в обонятельной зоне формируется ощущение запаха. И хоть по меркам мира животных обоняние у человека неважное, мы способны различать не менее 4 тыс. различных запахов, а по самым последним сведениям-и до 10 тыс. В настоящее время выделяют шесть основных запахов, из которых «складываются» все остальные: цветочный, фруктовый, зловонный, пряный, смолистый, запах гари. Чтобы сформировать запах, мельчайшие частицы вещества - молекулы должны попасть в полость носа и взаимодействовать с рецептором на волоске обонятельной клетки. Совсем недавно выяснилось, что эти клетки различаются, так как изначально настроены на определенный запах и способны распознавать разные пахучие молекулы.

Вкусовой анализатор. Периферический отдел вкусового анализатора - это вкусовые рецепторные клетки. Большая часть их расположена в эпителии языка. Кроме того, вкусовые рецепторы расположены на задней стенке глотки, мягком нёбе и надгортаннике. Рецепторные клетки объединены во вкусовые почки, которые собраны в три вида сосочков - грибовидные, желобовидные и листовидные.

Вкусовая почка имеет форму луковицы и состоит из опорных, рецепторных и базальных клеток. Почки не достигают поверхности слизистой оболочки, они заглублены и связаны с ротовой полостью небольшим каналом - вкусовой порой. Непосредственно под порой находится небольшая камера, в которую выступают микроворсинки рецепторных клеток. Вкусовые рецепторы реагируют только на растворенные в воде вещества, нерастворимые вещества вкуса не имеют. Человек различает четыре вида вкусовых ощущений: соленое, кислое, горькое, сладкое. Больше всего рецепторов, восприимчивых к кислому и соленому вкусу, расположено по бокам языка, к сладкому - на кончике языка, к горькому - на корне языка. Каждая рецепторная клетка наиболее чувствительна к определенному вкусу.

Рецепторы, улавливающие растворенные химические вещества, называются вкусовыми сосочками. Они представляют собой маленькие бугорки, на которых расположены специальные воспринимающие вкус клетки. В одном сосочке находится около 50 таких клеток. По внешнему виду сосочки, воспринимающие различные вкусовые ощущения, не различаются, однако в них вырабатываются особые рецепторные вещества, одни из которых реагируют, например, на горькое, другие - на сладкое и т. д.

Когда пища оказывается во рту, она растворяется в слюне, и этот раствор попадает в полость камеры, воздействуя на рецепторы. Если рецепторная клетка реагирует на данное вещество, она возбуждается. От рецепторов информация о вкусовых раздражителях в виде нервных импульсов по волокнам языкоглоточного и частично лицевого и блуждающего нервов поступает в средний мозг, ядра таламуса и, наконец, на внутреннюю поверхность височных долей коры больших полушарий, где расположены высшие центры вкусового анализатора.

В определении вкуса, помимо вкусовых ощущений, участвуют обонятельные, температурные, тактильные, а иногда даже и болевые рецепторы (если в рот попадет едкое вещество). Совокупность всех этих ощущений и определяет вкус пищи.

  • Часть нервных импульсов от обонятельного эпителия поступает не в височные доли коры, а в миндалевидный комплекс лимбической системы. В этих структурах находятся также центры тревоги и страха. Обнаружены такие вещества, запах которых способен вызывать у людей ужас, запах же лаванды, напротив, успокаивает, делая людей на время более добродушными. Вообще, любой незнакомый запах должен вызывать неосознанную тревогу, ведь для наших далеких предков это мог быть запах человека-врага или хищпого животного. Вот нам и передалась но наследству такая способность - реагировать на запахи эмоциями. Запахи прекрасно запоминаются и способны пробуждать эмоции давно забытых дней, как приятные, так и неприятные.
  • Признаки того, что младенец способен различать запах, начинают проявляться к концу первого месяца жизни, но какого-либо предпочтения определенным ароматам малыш сначала не оказывает.
  • Вкусовые ощущения формируются у человека раньше всех других. Даже новорожденный младенец способен отличить материнское молоко от воды.
  • Вкусовые рецепторы - самые короткоживущие чувствительные клетки организма. Продолжительность жизни каждой из них - около 10 дней. После гибели рецепторной клетки из базальной клетки почки формируется новый рецептор. У взрослого человека 9-10 тыс. вкусовых почек. С возрастом часть их отмирает.
  • Боль - это неприятные ощущения, которые свидетельствуют о повреждении организма или об угрозе этого вследствие травмы или болезни. Боль воспринимается разветвленными окончаниями особых нервов. Таких окончаний в коже человека не менее миллиона. Кроме того, запредельно сильное воздействие на любой рецептор (зрительный, слуховой, тактильный и другие) приводит к формированию в головном мозге болевого ощущения. Высший болевой центр находится в таламусе, и именно там формируется ощущение боли. Если стукнуть молотком по пальцу, то сигнал от болевых окончаний и других рецепторов направится в ядра таламуса, в них боль возникнет и будет спроецирована на то место, по которому стукнул молоток. Формирование болевых ощущений очень сильно зависит от эмоционального состояния и уровня интеллекта человека. Например, люди пожилого и среднего возраста легче переносят боль, чем молодые и тем более дети. Интеллигентные люди всегда более сдержанны во внешнем проявлении боли. По-разному относятся к страданиям и люди различных рас и народов. Так, жители Средиземноморья реагируют на болевые воздействия гораздо сильнее, чем немцы или голландцы.

    Оценивать силу боли вряд ли можно объективно: уж очень различается чувствительность к боли у разных людей. Она может быть повышенной, пониженной и даже совсем отсутствовать. Вопреки преобладающему мнению, мужчины гораздо терпеливее женщин, да и сильные болевые ощущения возникают у представителей различных полов в разных органах. Повышенная болевая чувствительность женщин определяется теми гормонами, которые вырабатывает их организм. Но в период беременности, особенно в ее конце, болевая чувствительность значительно снижается для того, чтобы женщина меньше страдала в процессе родов.

  • В настоящее время в арсенале медиков имеются очень хорошие длительно действующие обезболивающие лекарства - анальгетики. Местные анальгетики надо ввести туда, где возникает боль, например в область удаляемого зуба. Такие лекарства блокируют проведение импульсов по болевым путям в мозг, но действуют они не очень долго. Для общей анестезии приходится погружать человека в бессознательное состояние при помощи особых веществ. Самыми лучшими блокаторами боли являются вещества, сходные с морфином. Но, к сожалению, их использование не может быть широким, гак как все они приводят к возникновению наркотической зависимости.

Проверьте свои знания

  1. Что такое мышечное чувство?
  2. Какие рецепторы обеспечивают кожную чувствительность?
  3. Какую информацию мы получаем с помощью осязания?
  4. В какой части тела осязательных рецепторов особенно много?
  5. В каком состоянии должно находиться вещество, чтобы человек почувствовал его вкус, запах?
  6. Где расположен орган обоняния?
  7. Как возникает ощущение запаха?
  8. Каковы функции органа вкуса?
  9. Как возникает ощущение вкуса?

Подумайте

  1. Почему при нарушении мышечного чувства человек не может передвигаться с закрытыми глазами?
  2. Почему человек ощупывает предмет, чтобы лучше изучить его?

При помощи мышечного чувства человек ощущает положение частей своего тела в пространстве. Вкусовой анализатор защищает человека от наличия в пище вредных веществ. Обонятельный анализатор принимает участие в определении качества пищи, воды, воздуха.

В скелетных мышцах также есть рецепторы, посылающие а головной мозг информацию о состоянии мышц - их сокращении или растяжении. Поэтому человек, даже не глядя, всегда знает, в каком положении пребывают разные части его тела.

Рецепторы, расположенные в мышцах, - проприоцепторы - имеют сложное строение. Например, мышечные веретена представляют собой покрытое соединительнотканной капсулой скопление нескольких видоизмененных мышечных волокон, оплетенных одним или несколькими чувствительными нервными волокнами. Растяжение или сокращение мышечных волокон вызывает в нервном волокне возбуждение, которое направляется в зону мышечной чувствительности коры больших полушарий и к мозжечку.

Для человека важное значение имеет мышечно-суставное чувство, позволяющее при закрытых глазах правильно определить положение своего тела, находить предметы. Рецепторы двигательного анализатора находятся в мышцах, сухожилиях, связках и на суставных поверхностях.

По нервам возбуждение от мышц и суставов передается в чувствительно-двигательную зону больших полушарий, где возникает ощущение, позволяющее различать изменения в положении отдельных частей и всего тела в пространстве. Благодаря мышечному чувству определяется масса и объем предметов, производится тонкий анализ движений и их координация. При нарушении функции двигательного анализатора походка становится неуверенной, шаткой, человек теряет равновесие. 


Синаптическая теория. Свое название эта теория получила из-за того, что главное внимание в ней уделяется роли синапса в фиксации следа памяти. Она утверждает, что при прохождении импульса через определенную группу нейронов возникают стойкие изменения синаптической проводимости в пределах определенного нейронного ансамбля.
 Один из наиболее авторитетных исследователей нейробиологических основ памяти, С. Роуз подчеркивает: при усвоении нового опыта, необходимого для достижения каких-либо целей, происходят изменения в определенных клетках нервной системы. Эти изменения, выявляемые морфологическими методами с помощью световой или электронной микроскопии, представляют собой стойкие модификации структуры нейронов и их синаптических связей.
 Г. Линч и М. Бодри (1984) предложили следующую гипотезу. Повторная импульсация в нейроне, связанная с процессом запоминания, предположительно, сопровождается увеличением концентрации кальция в постсинаптической мембране, что приводит к расщеплению одного из ее белков. В результате этого освобождаются замаскированные и ранее неактивные белковые рецепторы (глутаматрецепторы). За счет увеличения числа этих рецепторов возникает состояние повышенной проводимости синапса, которое может сохраняться до 5-6 суток.
 Эти процессы тесно связаны с увеличением диаметра и усилением активности так называемого аксошипикового синапса - наиболее пластичного контакта между нейронами. Одновременно с этим образуются новые шипики на дендритах, а также увеличиваются число и величина синапсов. Таким образом, экспериментально показаны морфологические изменения, сопровождающие формирование следа памяти.

Среднее ухо

Основной частью среднего уха является барабанная полость - небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко - они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их.

Слуховые косточки - как самые маленькие фрагменты скелета человека, представляют цепочку, передающую колебания. Рукоятка молоточка тесно срослась с барабанной перепонкой, головка молоточка соединена с наковальней, а та, в свою очередь, своим длинным отростком - со стремечком. Основание стремечка закрывает окно преддверия, соединяясь таким образом с внутренним ухом.

Полость среднего уха связана с носоглоткой посредством евстахиевой трубы, через которую выравнивается среднее давление воздуха внутри и снаружи от барабанной перепонки. При изменении внешнего давления иногда «закладывает» уши, что обычно решается тем, что рефлекторно вызывается зевота. Опыт показывает, что ещё более эффективно заложенность ушей решается глотательными движениями или если в этот момент дуть в зажатый нос.

Для понимания физиологических основ внимания большое значение имеют работы выдающихся русских физиологов И. П. Павлова и А. А. Ухтомского,
Уже в выдвинутом И. П. Павловым представлении об особых реакциях нервной системы - ориентировочных рефлексах (рефлекс «что такое?», как его называл И. П. Павлов) содержалось предположение о рефлекторной природе непроизвольного внимания. «Мы вглядываемся в появляющийся образ, прислушиваемся к возникшим звукам; усиленно втягиваем коснувшийся нас запах…» -писал И. П. Павлов. По современным данным (Е. Я. Соколов и др.), ориентировочные реакции очень сложны. Они связаны с активностью значительной части организма. В ориентировочный комплекс входят как внешние движения (например, поворот глаз п головы в сторону раздражителя), так и изменения чувствительности определенных «анализаторов; изменяется характер обмена веществ; изменяются дыхание, сердечно-сосудистые и кожно-гальванические реакции, т. е. происходят вегетативные изменения; одновременно возникают и изменения электрической активности мозга. Согласно идеям И. П. Павлова и А. А. Ухтомского, явления внимания связаны с повышением возбудимости определенных мозговых структур в результате взаимодействия процессов возбуждения и торможения.
Как считал И. П. Павлов, в каждый момент времени в коре имеется какой-либо участок, характеризующийся наиболее благоприятными, оптимальными условиями для возбуждения. Этот участок возникает по закону индукции нервных процессов, в соответствии с которым нервные процессы, концентрирующиеся в одной области коры головного мозга, вызывают торможение в других ее областях (и наоборот). В оптимальном очаге возбуждения легко образуются новые условные рефлексы, успешно вырабатываются дифференцировки, это в данный момент - «творческий отдел больших полушарий». Очаг оптимальной возбудимости динамичен. И. П. Павлов писал: «Если бы можно было видеть сквозь черепную коробку и если бы место больших полушарии с оптимальной возбудимостью светилось, то мы увидели бы на думающем сознательном человеке, как по его большим полушариям передвигается постоянно изменяющееся по форме и величине причудливо неправильных очертаний светлое пятно, окруженное на всем остальном пространстве полушарий более или менее значительной тенью». Это светлое «пятно» и соответствует очагу оптимального возбуждения, его «перемещение» - физиологическое условие динамичности внимания. Положение И. П. Павлова о движении очагов возбуждения по коре головного мозга подтверждается современными экспериментальными исследованиями (данные Н. М. Ливанова).
Особое значение для понимания физиологических механизмов внимания имеет принцип доминанты. По А. А. Ухтомскому, в мозгу всегда имеется доминирующий, господствующий очаг возбуждения. А. А. Ухтомский характеризует доминанту как констелляцию «центров с повышенной возбудимостью». Особенностью доминанты как господствующего очага является то, что она не только подавляет вновь возникающие очаги возбуждения, но и способна привлекать («притягивать») к себе слабые возбуждения и благодаря этому усиливаться за их счет, еще больше доминировать над ними. Доминанта является устойчивым очагом возбуждения. А. А. Ухтомский писал: «Под именем «доминанты» понимается более или менее устойчивый очаг повышенной возбудимости…» Представления А. А. Ухтомского о доминанте позволяют понять нервный механизм длительного интенсивного внимания.
Возникающие в центрах с повышенной возбудимостью наиболее благоприятные условия для мозговой деятельности определяют, очевидно, высокую эффективность всех познавательных процессов при направленном сосредоточении.
В последние годы в исследованиях советских и зарубежных ученых получены новые результаты, раскрывающие нейрофизиологические механизмы внимания. Внимание возникает на фоне общего бодрствования организма, связанного с активной мозговой деятельностью. Если активное внимание возможно при состоянии оптимального бодрствования, то трудности сосредоточения возникают как на фоне расслабленного, диффузного, так и на фоне чрезмерного бодрствования. Переход от пассивного к активному бодрствованию (вниманию) обеспечивает общая активация мозга. Внимание возможно при определенном уровне активности мозга. В настоящее время психофизиология располагает анатомическими, физиологическими и клиническими данными, свидетельствующими о непосредственном отношении к явлениям внимания различных структур неспецифической системы мозга (ретикулярная формация, диффузная таламическая система, гипоталамические структуры, гиппокамп и др.). Основной физиологической функцией неспецифической системы является регуляция различных форм неспецифической активации мозга (кратковременных и длительных, общих, глобальных и локальных, ограниченных). Предполагается, что непроизвольное внимание связано, прежде всего, с общими, генерализованными формами неспецифической активации мозга. Произвольное внимание связано как с увеличением общего уровня активации мозга, так и со значительными локальными сдвигами активности определенных мозговых структур.
В последние годы все большую роль начинают играть представления о ведущей роли коры больших полушарий в системе нейрофизиологических механизмов внимания. На уровне коры больших полушарий с процессами внимания связывают наличие особого типа нейронов (нейроны внимания - детекторы новизны и клетки установки - клетки ожидания).
Так, выявлено, что у здоровых людей в условиях напряженного внимания (например, при решении различных интеллектуальных и двигательных заданий) возникают изменения биоэлектрической активности в лобных долях мозга. У больных с поражениями некоторых отделов лобных долей мозга фактически невозможно с помощью речевой инструкции вызвать устойчивое произвольное внимание. Одновременно со слабостью произвольного внимания при поражении лобных долей мозга отмечается патологическое усиление непроизвольных форм внимания.
Таким образом, внимание связано с деятельностью ряда мозговых структур, но их роль в регуляции различных форм и видов внимания различна

Орган равновесия и пространственного чувства - вестибулярный аппарат - природа заключила во внутреннее ухо и поместила в толщу височной кости. Он состоит из двух частей: преддверия (1) (отсюда, собственно, и название аппарата - vestibulum в переводе с латинского означает преддверие) и сообщающихся с ним трех полукружных каналов (2).

Поверхность внутренней стенки преддверия делится небольшим костным гребнем на сферическое и эллиптическое углубления. И в каждом углублении располагается соответственно сферический соединительнотканный мешочек - саккулюс (3) и больший по размерам эллиптический мешочек - утрикулюс (4). Оба мешочка заполнены особой жидкостью эндолимфой, они сообщаются между собой через эндолимфатический проток (5).

На стенках мешочков имеются небольшие возвышения - чувствительные пятна (6). Пятно сферического мешочка при обычном положении головы располагается горизонтально, а пятно эллиптического мешочка - вертикально. Эти пятна представляют собой отолитовый аппарат (7). Состоит он из поддерживающих (8) и волосковых сенсорных (9), то есть чувствительных, клеток, над которыми лежит отолитовая мембрана (10).

Мембрана - это желеобразная масса, в которую вкраплены микроскопические шестигранные кристаллы - отолиты (11). Они состоят в основном из органических соединений кальция типа кальцита, гипса, арагонита, но в них может содержаться и магний, калий, натрий, некоторые другие вещества. Отолитовая мембрана закреплена относительно подвижно, и благодаря тому, что между ней и волосковыми клетками имеется узкое пространство, она свободно скользит над поверхностью волосков.

Вторая часть вестибулярного аппарата представлена тремя полукружными каналами, которые имеют вид тонких - диаметром около 2 миллиметров - дугообразно изогнутых трубочек, сообщающихся с преддверием. Внутри костных полукружных каналов вставлены меньшие по диаметру (0,5 миллиметра), но в точности повторяющие их по форме перепончатые соединительнотканные каналы. Узкая щель между стенкой перепончатого и костного каналов заполнена специфической жидкостью - перилимфой; перепончатый канал как бы плавает в ней, и она защищает его от толчков, других неблагоприятных внешних воздействий. Внутри перепончатых каналов тоже находится жидкость - эндолимфа, по составу несколько отличающаяся от перилимфы.

Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. Один - боковой (12) - лежит горизонтально, другой - передний (13) - ориентирован справа налево в вертикальной плоскости, а третий, задний (14) канал тоже занимает вертикальное положение, но ориентирован спереди назад. Каждый из этих каналов выходит из утрикулюса (эллиптического мешочка) и, описав две трети дуги, вновь в него впадает, расширяясь и образуя на месте впадения ампулу (15). Внутри ампулы имеется образование в виде узкого усеченного конуса, выступающего в ее просвет. Это гребешок (16). В его толще находятся волосковые сенсорные клетки (17), причем ближе к вершине гребешка эти клетки имеют форму кувшинчиков, а те, которые располагаются у его склона, - цилиндров. Сенсорные клетки находятся под желеподобным куполом (18), вплотную примыкающим к стенке ампулы.

Из основания волосковых рецепторных клеток, расположенных и в чувствительных пятнах, и на поверхности гребешков, отходят нервные волокна. Они сплетаются в пучки, а те, в свою очередь, составляют вестибулярный нерв. По нему импульсы от рецепторных клеток поступают в продолговатый мозг, где находится вестибулярный центр. Вестибулярный центр связан нервными коммуникациями с различными структурами подкорки и коры головного мозга. Но, пожалуй, самые тесные связи у него с двигательными, а также зрительными центрами головного мозга. Выключение зрения ведет к неустойчивости равновесия, потере ориентации в пространстве. А когда в силу каких-либо причин страдает функция вестибулярного аппарата, зрительная функция в определенной степени ее восполняет.

Подобно всем без исключения организмам планеты мы живем в условиях гравитации. И для того, чтобы удержать ту или иную позу, выполнить какое-либо движение и при этом сохранить равновесие, нам постоянно приходиться преодолевать силу притяжения Земли. Такую возможность обеспечивают организмы рецептор гравитации, или вестибулрный аппарат, центральная нервная система и двигательная мускулатура.

Отолитовая мембрана вестибулярного аппарата служит своеобразным отвесом, наподобие тех, которые используют строители для определения вертикали. Любое изменение положения головы или тела обязательно вызывает изменение направления силы тяжести и заставляет отолиты мембраны отклоняться в ту или иную сторону. При этом они задевают волоски рецепторных клеток, тем самым возбуждая их.

Рецепторные клетки мешочков реагируют на прямолинейные ускорения, которые возникают, в частности, при движении тела вперед, назад, вверх, вниз. Сигналы от них поступают в головной мозг и тогда, когда человек остается неподвижным.

Рецепторные клетки в ампулах подчиняются движениям эндолимфы. Причем, когда эндолимфа движется в сторону утрикулюса и отклоняет туда же волоски, клетки возбуждаются. Если же движение эндолимфы происходит в обратном направлении, волосковые клетки остаются безучастными и не посылают никаких сигналов в головной мозг. Рецепторный аппарат ампул реагирует на движения, которые сопровождаются угловыми ускорениями (а они возникают при поворотах головы, вращательных движениях тела).

Вестибулярный аппарат улавливает и регулирует движение тела во всех направлениях в трех плоскостях, безошибочно корректирует его положение в пространстве. Правда, есть люди, у которых он обладает повышенной возбудимостью. Такие люди боятся высоты (стоит человеку подойти, например, к краю балкона, как у него начинает кружиться голова и он теряет равновесие), их нередко укачивает в городском транспорте, не говоря уже о полетах в самолете или плавании на морских судах. Укачивание сопровождается неприятными ощущениями: появляется чувство общей слабости, замирания сердца, подступает тошнота. Объясняется это тем, что вестибулярный нервный центр в продолговатом мозге тесно соседствует с центрами дыхания, кровообращения, пищеварения, выделения; его возбуждение, распространяясь на эти центры, и вызывает неприятные ощущения.

Среди раздражений, подкрепляющих рабочие движения, значительную роль играют те, которые человек воспринимает как результат мышечной чувствительности. Мышечная чувствительность проявляется в способности человека точно (даже с закрытыми глазами) определять положение частей тела. Посредством мышечной чувствительности человек определяет вес предметов, с которыми ему приходится иметь дело, соразмеряет усилия, поднимая тяжелые или легкие предметы. Точность мышечного чувства превосходит точность чувствительности кожи к давлению.

Большое значение суставного и мышечного чувства для регуляции движений наглядно подтверждается наличием в проводящей системе спинного мозга большого количества нервных проводников, несущих нервные чувствительные импульсы от мышц и суставов к головному мозгу (к коре головного мозга и мозжечку). В коре головного мозга находится специальный отдел, осуществляющий анализ нервных сигналов, поступающих из скелетно-мышечной системы - корковый двигательный анализатор. От правильного функционирования аппаратов мышечной чувствительности, сохранности ее нервных путей и двигательного анализатора зависят совершенство и точность движений. При выключении мышечной чувствительности, как бывает, например, при сильном охлаждении, резко нарушаются привычные, ранее хорошо выполнявшиеся движения.

Нервные импульсы, которые идут от работающих мышц в центральную нервную систему и вызывают рефлексы, уточняющие движение, представляют обратную связь в двигательном аппарате человека: они идут в обратном направлении по отношению к двигательным нервным импульсам. Они сигнализируют в центральную нервную систему о тех отклонениях от заданного рисунка движения, которые должны быть исправлены. К числу рецепторов, заложенных в мышцах, относятся мышечные веретена, Которые состоят из нескольких тонких так называемых интрафузальных поперечнополосатых мышечных волокон. Одиночное интрафузальное волокно имеет в центральной части ядерную сумку, в которой расположены окончания афферентных нервных волокон (толстые волокна). Два способных к сокращению участка интрафузальных волокон (выше и ниже ядерной сумки) иннервированы тонкими двигательными гамма-эфферентными волокнами, образующими мелкие концевые пластинки. Один конец интрафузального волокна прикреплен к обычному мышечному волокну, а другой - к сухожилию.

Если мышца растянута или расслаблена, то мышечные веретена также растянуты и в рецепторах ядерной сумки возникают нервные импульсы, идущие в центральную нервную систему. Если же мышцы сокращены, то натяжение мышечных веретен ослабевает и импульсация прекращается. Следовательно, рецепция из мышечных веретен позволяет регулировать движения по ориентиру заданного или заученного переменного во времени и в зависимости от положения работающей части тела напряжения (а также ускорения звеньев тела). Этот вид регуляции имеет определенное преимущество перед регуляцией по изменению траектории и суставных углов, так как позволяет использовать силу инерции и запасы кинетической энергии и предвидеть и подготовлять условия перехода от одной фазы движения к следующей. В исследованиях на животных было установлено, что раздражение мышечных веретен растяжением вызывает в них импульсы, которые не достигают клеток коры больших полушарий и распространяются не дальше коры мозжечка. Этот факт находится в соответствии с тем, что регуляция сложных движений по напряжению обычно человеком в деталях не осознается.

Гамма-эфферентные нервные волокна приносят импульсы из ретикулярной формации, которые вызывают сокращение интрафузальных мышечных волокон, что приводит к усилению потока афферентных импульсов от растягиваемых нервных волокон.

Движения, требующие большой точности, могут совершаться только при наличии ряда сигналов обратной связи и последующих дополнительных мелких исправляющих движений. В этом отношении показателен пример езды на велосипеде по прямой линии. Начинающий велосипедист не успевает быстро делать исправляющие движения, он реагирует только на грубые отклонения от заданного движения, и след от его велосипеда представляет собой волнистую линию. В результате тренировки велосипедист учится исправлять более мелкие отклонения, и след от его велосипеда становится ровнее.

Таким образом, при выполнении рабочего движения нервная регуляция не исчерпывается первичной серией нервных импульсов, соответствующей условнорефлекторному рабочему стереотипу данного движения, к ним присоединяются импульсы обратной нервной связи, исправляющие вызванные всевозможными случайными влияниями отклонения от заданного рисунка движения. Следовательно, мышечная чувствительность осуществляет в рабочих движениях две важные функции обратной связи: сигнализацию в двигательный анализатор коры больших полушарий головного мозга о достижении звеньями тела определенных этапов и сигнализацию об отклонениях от заданного рисунка движений.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Физиология сенсорных систем

Мышечная чувствительность

Заключение

Список литературы

Введение

В процессе тысячевековой эволюции мира животных развивалась их способность гибко адаптировать свое поведение к условиям окружающей среды. Эта способность достигла высочайшего совершенства в функциях нервной системы, особенно с развитием исключительно ценных для выживания свойств: фиксации следов пережитых событий. Такая память в широком смысле строго слова, позволяла каждой особи действовать, исходя из собственного жизненного опытов, показывала связь событий в окружающей мире, а при формировании мозга человека являлась основой механизмом его мыслительной деятельности.

Над инертными, рожденными общими для всех особей вида формами поведения, реализуемыми безусловными рефлексами, возникают и развиваются гибкие, приобретаемые путем жизненного опыта индивидуальные формы поведения, которые реализуются в простейших проявлениях в виде условных рефлексов. Такая высшая нервная деятельность развивается и совершенствуется, обеспечивая все более гибкое и тонкое приспособление поведения к меняющимся условиям окружающей среды.

Учение о высшее нервной деятельности, ознаменовавшее материалистический научный подход к пониманию природы разумного поведения и явления психики, является великим достижением отечественной научной мысли. Его основы заложены трудами И.М.Сеченовым и И.П.Павлова, оно творчески развивается и в исследованиях современных ученых.

Далеко не на все вопросы физиологии высшей нервной деятельности в настоящее время получении ответы. По поводу многих из них существует различные мнения. Однако очень важно, что эта область знания быстро развивается и входит во взаимополезные контакты со сложными науками.

Физиология сенсорных систем

Контакт с внешним миром, воздействие его на организм возможны благодаря высокоспециализированным нервным аппаратам, получившим название сенсорных систем. Непосредственный же субстрат, который принимает на себя воздействия предметов т явлений окружающей среды, - это вынесенный на периферию рецепторные приборы или, как их иногда называют, органы чувств. Современная нейрофизиология располагает сведениями о работе аппаратов рецепции и высших этажей мозга, чтобы служить естественно-научной основой для постулирования положения об адекватности отражения Батуев А.С. Физиология высшей нервной деятельности и сенсорных систем. / Учеб. пособие для вузов. - СПб.: Питер, 2008. - 317 с..

Проблема адекватности отражения - одна из самых старых и вместе с тем вечно новых и особо обсуждаемых проблем. Дифференциация раздражений, их дробный анализ происходит уже на уровне рецепторных приборов. Последние снабжен специальными элементами - датчиками, которые активизируются лишь в связи с изменениями определенного свойства объекта. Энергия внешнего раздражения трансформируется благодаря физико-химическим изменениям в частотно-модулированные и местные процессы качественно однородного характера. Многообразие свойств объекта как бы исчезает, превращаясь в «безликий» нервный процесс. В этом заключается важная особенность отражения для живых организмов, в нервных клетках которых кодируется не сам материальный носитель и его энергия, а переданная информация. Частотно-модулированный импульсный процесс является важным, но не единственным фактором кодирования пространственно-временной структуры объекта. Большую роль играют также местные, нераспространяющиеся нервные влияния типа рецепторного потенциала

Сенсорная система как аппарат, через который информация поступает в мозг функционирует посредством прямых и обратных связей, то есть как система самоорганизации и управления. Она не только пассивно отражает воздействия, адресуемые к ее рецепторному аппарату, а выступает как активный сигнализатор мозга, сообщающий наиболее существенную информацию. Активная природа деятельности сенсорных систем не ограничивается центрифугальными влияниями на рецепторы, а является общим принципом и может быть прослежена на всех синоптических уровнях, действующих как активные фильтры происходящего импульсного потока. Процесс фильтрации продолжается и умножается в межнейронных синапсах. Как известно, на одном нейроне в центральной нервной системе могут заканчиваться несколько тысяч окончаний аксонов других нейронов, по которым способны одновременно поступать различные влияния. В релейных ядрах происходит дальнейшая фильтрация импульсов, отбор из огромного их числа наиболее важных для организма в данный момент. Обратные связи, представленные в каждой сенсорной системе, осуществляют настройку рецепторных элементов и переключательных аппаратов к более адекватному и полному восприятию внешнего мира и в то же время обеспечивают избирательную фильтрацию биологически полезной информации из «шума», то есть комплекса разномодальных признаков.

Рассматривая проблему адекватности, то есть сходства образца и отражаемого объекта, необходимо учитывать два обстоятельства: во-первых, та или иная степень адекватности достигается во времени не мгновенно, а постепенно, во-вторых окончательная оценка адекватности производится при соотнесении нового образца с его нервной моделью, созданной заранее на основе всего комплекса воздействий и прежнего жизненного опыта (памяти).

Естественно, что наибольшей точностью и полнотой отражения обладает человек с его способностью к абстрактному мышлению. Но тем не менее и у человека образ предмета не является тождеством самого предмета, образ всегда оказывается субъективной копией по отношению к предмету как объективному началу. Образ идеален Ии функционален, в нем не содержится вещественности самих предметов, а лишь их пространственно-временная структура, упорядоченность, т.е. информация. И наконец, образ предметен, ибо является отражением свойств определенного конкретного предмета.

Естествен вопрос: на каком этапе непрерывные физиологические преобразования исчерпывают свое назначение и порождают психический процесс? Весь процесс абстрагирования копии от ее носителя, порождающий субъективно реальное, идеальное, есть процесс психический. Иными словами, физиологические процессы головного мозга выступают как носители идеального содержания лишь в том случае, когда их результат соотносится человеком с объектом отражения. Именно отнесенность мозговых процессов к объективному миру и делает эти процессы психическими, идеальными Батуев А.С. Физиология высшей нервной деятельности и сенсорных систем. / Учеб. пособие для вузов. - СПб.: Питер, 2008. - 317 с..

При известных допущениях правомочно говорить о локализации функций сенсорных систем, имея в виду ее ограниченную топическую конструкцию. Иное дело, когда речь идет о таком интегративном понятии, кА «зрительная функция», во всей сложности и многообразии ее проявлений. Локализовать такую функцию экспериментально невозможно и теоретически неверно, потому, что всякая сложная психическая функция полисенсорна. Локализовать мозговые структуры, необходимые и достаточные для осуществления целостной функции организма, нельзя, и в этом нет логической необходимости. Локализованы лишь сенсорные системы как аппараты ощущений, на базе которых возникает нервная модель а затем - и полисенсорный субъективные предметный образ.

высший нервный рецепция раздражение

Мышечная чувствительность

Под этим названием подразумевается ряд чувствующих явлений в мышцах, которые не укладываются в рамки трех разобранных категорий, мало изучены в отношении своей физиологии и патологии, но в то лее время представляют собою феномены несомненно чувствующего порядка и в качестве таковых должны найти себе какое-нибудь место в классификации.

Сюда относится способность мышц давать после усиленной работы чувство усталости, знакомое каждому из повседневного опыта.

Затем относят сюда же способность мышц ощущать давление (например от сжимания мышцы рукой исследующего), а также боль, если давление это становится очень сильно. Последнее, вероятно, относится уже к области болевой чувствительности глубоких тканей, о чем я говорил при начале разбора глубокой чувствительности.

Наконец, сюда же причисляют способность человека ощущать сокращение своих мышц - способность, выступающую особенно резко в патологических случаях, как, например, болезненность в икроножной мышце при судорогах, неприятное ощущение подергивания в круговой мышце глаза при общих неврозах и т. п.

Скелетно-мышечный аппарат является исполнительной системой организма, и поэтому его рецепторные элементы (проприорецепторы) играют особо важную роль среди других чувственных образований. Они проводят информацию о каждом моменте движения - положений суставов, длине и напряжении всех мышц, участвующих в двигательном акте.

В состав скелетной мышцы выделяют две группы волокон. Если первые создают те усилия, которые необходимы для движений и поддержания позы (сухожильные рецепторы), то вторые к формированию восходящей сенсорной импульсации. Самостоятельную группу составляют рецепторы суставного угла.

Веретена соединены с мышечными волокнами параллельно, а сухожильные органы - последовательно. Поэтому основные величины, измеряемые мышечными рецепторами (веретенами и сухожильными органами), - это изменения длины и напряжения при растяжении и сокращении мышц.

При активном сокращении мышцы напряжения веретен ослабевает (они «разрушаются») и частота импульсации в соответствующих афферентных органов снижается, а сухожильный рецептор, наоборот, при этом возбуждается Батуев А.С. Физиология высшей нервной деятельности и сенсорных систем. / Учеб. пособие для вузов. - СПб.: Питер, 2008. - 317 с.. На уровне спинного мозга посредством так называемой гамма-моторной системы осуществляются наиболее простые двигательные реакции фазного и тонического типа. Гамма-моторная система устроена по принципу обратной связи, благодаря которой усиливается импульсация мышечного окончания при постоянной степени растяжения и возбуждаются мышечные окончания во время начала растяжения.

Афферентная импульсация от мышечно-суставных рецепторов частью переключается на мотонейроны спинного мозга, а частью направляется по восходящим путям в высшие отделяя головного мозга, а частью направляется по восходящим путям в высшие отделы головного мозга, в продолговатый мозг. Отсюда берут начала волокна второго порядка, получившие название медиальной петли, которая заканчивается в вентро-базальном комплексе таламуса. От этих ядер берут начало нейроны III порядка, которые направляются к коре больших полушарий, к сенсомоторным полям в передней центральной извилине.

Особенностью таламичесого и еще в большей степени коркового звена скелетно-мышечной сенсорной системы является высокая степень интеграции сенсорного потока. На одни и те же нейроны, в частности пирамидальные клетки сенсомоторной коры, конвергируют не только афферентные входы от оных и мышечных рецепторов, но и проекции от зрительных, слуховых, вестибулярных и других структур.

Большую роль в интеграции скелетно-мышечной информации и информации от других сенсорных систем играет теменная ассоциативная область коры, где обнаружено особенно большое количество полисенсорных нейронов. Здесь формируется интегральная «схема тела» и возникает целостное представление о соотнесенности собственного тела с окружающим пространством. Повреждения теменной коры приводят к нарушениям скелетно-мышечной и кожной чувствительности. При этом наблюдается значительная потеря способности к формированию целостного образа и его локализации на площади тела и в окружающем пространстве.

Деятельность мышечных веретен подвергается мощному нисходящему влиянию головного мозга. В ходе двигательной реакции под влиянием нисходящих сигналов происходит определенное представление функциональной значимости возводящих систем и, следовательно, изменение приносимой ими информации в деятельности высших отделов мозга. Сеченов указывает на значение «мышечного чувства» - сигналов о завершении предыдущего движения Дубынин В.А., Каменский А. А., Сапин М.Р. и др. Регуляторные системы организма человека. / Учеб. пособие для вузов. - М.: Дрофа, 2003. - 368 с.. Используя терминологию высшее нервной деятельности, можно сказать, что в этом случае мы наблюдаем один из вариантов установления множественных временных связей в коре больших полушарий. Часть из них сформировалась между слуховыми и двигательными центрами еще на первом этапе обучения, а затем, когда мы стали уменьшать паузы между рефлексами, произошло следующее. Движение, составляющее суть первого рефлекса (нажатие на педаль), является следствием сокращения по системе мышечной чувствительности передается в центральную неравную систему и достигают коры больших полушарий. В ее соответствующей зоне (область центральной борозды) возникает очаг возбуждения. Если в этот момент запустить второй рефлекс, его центры и центр мышечной чувствительности, активизированные нажатием на педаль, окажутся одновременно возбужденными. В итоге между ними произойдет установление ассоциации (дополнительной условной связи). То же будет происходит и в случае третьего рефлекса - с его центрами окажется связан центр мышечной чувствительности, реагирующий на сокращение жевательных мышц и мышц шеи.

Заключение

Адекватность сенсорного отражения ни в коем случае нельзя трактовать как получение организмом точной зеркальной копии окружающего мира.

Во-первых, воспринимаются и оцениваются не сами по себе элементы внешнего мира, а их взаимоотношения и взаимосвязи, формирующие целую структуру, которая может иметь ту или иную биологическую значимость в данный момент и при данных обстоятельствах.

Во-вторых, необходимо рассматривать сенсорные системы не как отдельные детали целостного механизма, а как тесно взаимодействующие структурно-функциональные образовании, формирующие целостный неделимый образ окружающей действительности.

Наконец, в-третьих, сенсорные системы являются не пассивными каналами линии связи, информирующими организм р событиях и изменениях в окружающем мире, а представляют собой активные преобразователи информации, извлекающие сведения о тех событиях, которые в данный момент являются наиболее значимые и служат дл формирования и регулирования адекватного, целенаправленного поведения по удовлетворению доминирующей мотивации.

Список литературы

1. Богданов А.В. Физиология центральной нервной системы и основы простых форм адаптивного поведения. - М.: МПСИ, 2005.

2. Батуев А.С. Физиология высшей нервной деятельности и сенсорных систем. / Учеб. пособие для вузов. - СПб.: Питер, 2008.

3. Дубынин В.А., Каменский А.А., Сапин М.Р. и др. Регуляторные системы организма человека. / Учеб. пособие для вузов. - М.: Дрофа, 2003.

4. Смирнов В.М. Физиология центральной нервной системы. - М.: Академия, 2007.

5. Физиология сенсорных систем. - СПб., 2003.

Размещено на Allbest.ru

Подобные документы

    Общая физиология сенсорных систем. Соматосенсорный, вкусовой и обонятельный анализаторы. Определение точек прикосновения. Определение пространственных порогов тактильной рецепции и локализации болевых рецепторов. Определение вкусовых ощущений и порогов.

    методичка , добавлен 07.02.2013

    Сенсорная организация личности как уровень развития отдельных систем чувствительности и возможность их объединения. Анализаторы сенсорных систем. Деятельность сенсорных рецепторов. Общие принципы устройства сенсорных систем. Работа органов чувств.

    реферат , добавлен 24.05.2012

    Законы раздражения возбудимых тканей и следствия, которые из них вытекают. Физиология человека, регуляция и сенсорное обеспечение движений. Минимальная сила раздражителя. Законы силы, времени и адаптации организма человека. Наличие внешнего раздражителя.

    контрольная работа , добавлен 23.07.2009

    Понятие чувствительности как способности организма воспринимать раздражение из внешней и внутренней среды. Характеристика рецепции, функции анализаторов. Основные виды рецепторов. Клиническая классификация чувствительности, особенности ее сложных видов.

    презентация , добавлен 26.04.2015

    Общая характеристика органов чувств. Рецепторы и их функциональная характеристика. Обработка сенсорных стимулов на уровне спинного мозга, таламуса и коры больших полушарий. Аускультация как диагностический метод. Общий принцип строения сенсорных систем.

    презентация , добавлен 26.09.2013

    Переферическая нервная система. Проводниковая функция спинного мозга. Задний мозг: мозговой мост и мозжечок. Рефлекс как основная форма нервной деятельности. Внутреннее строение спинного мозга. Причины спинального шока. Физиология среднего мозга.

    презентация , добавлен 07.12.2013

    Кора и ноцицепция. Адаптация рецепторов боли. Нейронная опиатная система. Организация поведения в реальных условиях жизни (ВНД-высшая нервная деятельность). Афферентный синтез и принятие решения. Структурная основа инстинктов. Виды боли и поведение.

    презентация , добавлен 29.08.2013

    Психофизиология сенсорных систем: понятие, функции, принципы, свойства. Характеристика основных сенсорных систем. Сравнительная характеристика периферического отдела анализаторов. Корковые анализаторы мозга человека, и их связь с различными органами.

    реферат , добавлен 23.07.2015

    Проводниковая функция спинного мозга, физиологическое обоснование рефлексов. Физиология продолговатого мозга, его элементы: задний, средний, промежуточный, конечный. Типы нейронов: эфферентные, афферентные, вставочные, симпатической нервной системы.

    презентация , добавлен 05.03.2015

    Сосудодвигательный центр продолговатого мозга. Основные рефлексогенные зоны сердечно-сосудистой системы. Классификация рефлексов на сердечно-сосудистую систему. Импульсация барорецепторов синокаротидной зоны. Депрессорный рефлекс: его анализ и компоненты.



Новое на сайте

>

Самое популярное