Додому Вилучення Вирішити систему лінійних рівнянь із матрицею. Як вирішити систему рівнянь матричним способом

Вирішити систему лінійних рівнянь із матрицею. Як вирішити систему рівнянь матричним способом

Розглянемо систему лінійних рівнянь алгебри(СЛАУ) щодо nневідомих x 1 , x 2 , ..., x n :

Ця система в "згорнутому" вигляді може бути записана так:

S n i=1 a ij x j = b i , i=1,2, ..., n.

Відповідно до правила множення матриць розглянута система лінійних рівняньможе бути записана в матричній формі Ax=b, де

, ,.

Матриця A, стовпцями якої є коефіцієнти за відповідних невідомих, а рядками - коефіцієнти за невідомих у відповідному рівнянні називається матрицею системи. Матриця-стовпець b, елементами якої є праві частини рівнянь системи, називається матрицею правої частини або просто правою частиною системи. Матриця-стовпець x , елементи якої - шукані невідомі, називається рішенням системи.

Система лінійних рівнянь алгебри, записана у вигляді Ax=b, є матричним рівнянням.

Якщо матриця системи невироджена, то в неї існує зворотна матрицяі тоді вирішення системи Ax=bдається формулою:

x=A -1 b.

прикладВирішити систему матричним способом.

Рішеннязнайдемо зворотну матрицю для матриці коефіцієнтів системи

Обчислимо визначник, розкладаючи по першому рядку:

Оскільки Δ ≠ 0 , то A -1 Існує.

Зворотна матриця знайдена правильно.

Знайдемо рішення системи

Отже, x 1 = 1, x 2 = 2, x 3 = 3 .

Перевірка:

7. Теорема Кронекера-Капеллі про спільність системи лінійних рівнянь алгебри.

Система лінійних рівняньмає вигляд:

a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2 (5.1)

a m1 x 1 + a m1 x 2 +... + a mn x n = b m.

Тут а i j та b i (i = ; j = ) - задані, а x j - невідомі дійсні числа. Використовуючи поняття твору матриць, можна переписати систему (5.1) як:

де A = (а i j) - матриця, що складається з коефіцієнтів при невідомих системах (5.1), яка називається матрицею системи, X = (x 1 , x 2 ,..., x n) T , B = (b 1 , b 2 ,..., b m) T - вектори-стовпці, складені відповідно з невідомих x j і з вільних членів b i .

Упорядкована сукупність nдійсних чисел (c 1 , c 2 ,..., c n) називається рішенням системи(5.1), якщо в результаті підстановки цих чисел замість відповідних змінних x 1 , x 2 ,..., x n кожне рівняння системи перетворюється на арифметичну тотожність; інакше кажучи, якщо існує вектор C= (c 1 , c 2 ,..., c n) T такий, що AC  B.

Система (5.1) називається спільної,або можна розв'язати,якщо вона має принаймні одне рішення. Система називається несумісний,або нерозв'язноюякщо вона не має рішень.

,

утворена шляхом приписування праворуч до матриці A стовпця вільних членів, називається розширеною матрицею системи.

Питання про спільність системи (5.1) вирішується наступною теоремою.

Теорема Кронекера-Капеллі . Система лінійних рівнянь спільна і тоді, коли ранги матриць A іA збігаються, тобто. r(A) = r(A) = r.

Для безлічі М рішень системи (5.1) є три можливості:

1) M =  (у цьому випадку система несумісна);

2) M складається з одного елемента, тобто. система має єдине рішення (у цьому випадку система називається певною);

3) M складається з більш ніж одного елемента (тоді система називається невизначеною). У третьому випадку система (5.1) має безліч рішень.

Система має єдине рішення у тому разі, коли r(A) = n. При цьому число рівнянь - не менше від числа невідомих (mn); якщо m>n, то m-n рівняньє наслідками інших. Якщо 0

Для розв'язання довільної системи лінійних рівнянь потрібно вміти вирішувати системи, в яких число рівнянь дорівнює числу невідомих, - так звані системи крамерівського типу:

a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 ,

a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2 (5.3)

... ... ... ... ... ...

a n1 x 1 + a n1 x 2 +... + a nn x n = b n.

Системи (5.3) вирішуються одним із наступних способів: 1) методом Гаусса, або методом виключення невідомих; 2) за формулами Крамера; 3) матричним способом.

Приклад 2.12. Дослідити систему рівнянь та вирішити її, якщо вона спільна:

5x 1 - x 2 + 2x 3 + x 4 = 7,

2x 1 + x 2 + 4x 3 - 2x 4 = 1,

x 1 – 3x 2 – 6x 3 + 5x 4 = 0.

Рішення.Виписуємо розширену матрицю системи:

.

Обчислимо ранг основної матриці системи. Очевидно, що, наприклад, мінор другого порядку в лівому верхньому кутку = 7 0; містять його мінори третього порядку дорівнюють нулю:

Отже, ранг основного матриці системи дорівнює 2, тобто. r(A) = 2. Для обчислення рангу розширеної матриці A розглянемо облямовуючий мінор

отже, ранг розширеної матриці r(A) = 3. Оскільки r(A)  r(A), то система несумісна.

У першій частині ми розглянули трохи теоретичного матеріалу, метод підстановки, і навіть метод почленного складання рівнянь системи. Всім, хто зайшов на сайт через цю сторінку, рекомендую ознайомитися з першою частиною. Можливо, деяким відвідувачам здасться матеріал надто простим, але під час вирішення систем лінійних рівнянь я зробив низку дуже важливих зауважень і висновків щодо вирішення математичних завдань загалом.

Нині ж ми розберемо правило Крамера, і навіть рішення системи лінійних рівнянь з допомогою зворотної матриці (матричний метод). Всі матеріали викладені просто, докладно і зрозуміло, практично всі читачі зможуть навчитися вирішувати системи вищезазначеними способами.

Спочатку ми докладно розглянемо правило Крамера для системи двох лінійних рівнянь із двома невідомими. Навіщо? – Найпростішу систему можна вирішити шкільним методом, методом почленного складання!

Справа в тому, що нехай іноді, але трапляється таке завдання – вирішити систему двох лінійних рівнянь із двома невідомими за формулами Крамера. По-друге, простіший приклад допоможе зрозуміти, як використовувати правило Крамера для складнішого випадку – системи трьох рівнянь із трьома невідомими.

Крім того, існують системи лінійних рівнянь із двома змінними, які доцільно вирішувати саме за правилом Крамера!

Розглянемо систему рівнянь

На першому кроці обчислимо визначник, його називають головним визначником системи.

метод Гауса.

Якщо , то система має єдине рішення, і для знаходження коріння ми повинні обчислити ще два визначники:
і

На практиці вищезазначені визначники також можуть позначатися латинською літерою.

Коріння рівняння знаходимо за формулами:
,

Приклад 7

Розв'язати систему лінійних рівнянь

Рішення: Ми бачимо, що коефіцієнти рівняння досить великі, у правій частині присутні десяткові дроби з комою. Кома - досить рідкісний гість у практичних завданнях з математики, цю систему я взяв з економетричної задачі.

Як вирішити таку систему? Можна спробувати висловити одну змінну через іншу, але в цьому випадку напевно вийдуть страшні накручені дроби, з якими вкрай незручно працювати, та й оформлення рішення виглядатиме просто жахливо. Можна помножити друге рівняння на 6 і провести почленное віднімання, але й тут виникнуть ті самі дроби.

Що робити? У таких випадках і приходять на допомогу формули Крамера.

;

;

Відповідь: ,

Обидва корені мають нескінченні хвости, і знайдені приблизно, що цілком прийнятно (і навіть буденно) для завдань економетрики.

Коментарі тут не потрібні, оскільки завдання вирішується за готовими формулами, однак є один нюанс. Коли використовуєте цей метод, обов'язковимфрагментом оформлення завдання є наступний фрагмент: «Отже, система має єдине рішення». А якщо ні, то рецензент може Вас покарати за неповагу до теореми Крамера.

Зовсім не зайвою буде перевірка, яку зручно провести на калькуляторі: підставляємо наближені значення у ліву частину кожного рівняння системи. В результаті з невеликою похибкою повинні вийти числа, що знаходяться у правих частинах.

Приклад 8

Відповідь подати у звичайних неправильних дробах. Зробити перевірку.

Це приклад самостійного рішення (приклад чистового оформлення і у кінці уроку).

Переходимо до розгляду правила Крамера для системи трьох рівнянь із трьома невідомими:

Знаходимо головний визначник системи:

Якщо , то система має безліч рішень або несумісна (не має рішень). В цьому випадку правило Крамера не допоможе, потрібно використовувати метод Гауса.

Якщо , то система має єдине рішення і для знаходження коріння ми повинні обчислити ще три визначники:
, ,

І, нарешті, відповідь розраховується за формулами:

Як бачите, випадок «три на три» принципово нічим не відрізняється від випадку «два на два», стовпець вільних членів послідовно «прогулюється» зліва направо стовпцями головного визначника.

Приклад 9

Вирішити систему за формулами Крамера.

Рішення: Вирішимо систему за формулами Крамера

Отже, система має єдине рішення.

Відповідь: .

Власне, тут знову коментувати особливо нічого, зважаючи на те, що рішення проходить за готовими формулами. Але є кілька зауважень.

Буває так, що в результаті обчислень виходять погані нескоротні дроби, наприклад: .
Я рекомендую наступний алгоритм лікування. Якщо під рукою немає комп'ютера, робимо так:

1) Можливо, допущено помилку у обчисленнях. Як тільки Ви зіткнулися з «поганим» дробом, відразу необхідно перевірити, чи правильно переписано умову. Якщо умова переписана без помилок, потрібно перерахувати визначники, використовуючи розкладання по іншому рядку (стовпцю).

2) Якщо в результаті перевірки помилок не виявлено, то найімовірніше, допущено друкарську помилку в умови завдання. У цьому випадку спокійно та уважно вирішуємо завдання до кінця, а потім обов'язково робимо перевіркута оформляємо її на чистовику після рішення. Звичайно, перевірка дробової відповіді – заняття неприємне, але зате буде аргумент для викладача, який ну дуже любить ставити мінус за всяку бяку начебто. Як керуватися дробами, детально розписано у відповіді для Прикладу 8.

Якщо під рукою є комп'ютер, то для перевірки використовуйте автоматизовану програму, яку можна безкоштовно завантажити на початку уроку. До речі, найвигідніше відразу скористатися програмою (ще до початку рішення), Ви відразу бачитимете проміжний крок, на якому припустилися помилки! Цей калькулятор автоматично розраховує рішення системи матричним методом.

Зауваження друге. Іноді зустрічаються системи у рівняннях яких відсутні деякі змінні, наприклад:

Тут у першому рівнянні відсутня змінна, у другому – змінна. У таких випадках дуже важливо правильно та УВАЖНО записати головний визначник:
– на місці відсутніх змінних ставляться нулі.
До речі визначники з нулями раціонально розкривати по тому рядку (стовпцю), в якому знаходиться нуль, тому що обчислень виходить помітно менше.

Приклад 10

Вирішити систему за формулами Крамера.

Це приклад самостійного рішення (зразок чистового оформлення і у кінці уроку).

Для випадку системи 4 рівнянь із 4 невідомими формули Крамера записуються за аналогічними принципами. Живий приклад можна побачити на уроці Властивості визначника. Зниження порядку визначника – п'ять визначників 4-го порядку цілком вирішальні. Хоча завдання вже дуже нагадує черевики професора на грудях у студента-щасливчика.

Рішення системи за допомогою зворотної матриці

Метод зворотної матриці - це, по суті, окремий випадок матричного рівняння(Див. Приклад №3 зазначеного уроку).

Для вивчення даного параграфа необхідно вміти розкривати визначники, знаходити зворотну матрицю та виконувати матричне множення. Відповідні посилання будуть надані по ходу пояснень.

Приклад 11

Вирішити систему з матричним методом

Рішення: Запишемо систему в матричній формі:
, де

Будь ласка, подивіться на систему рівнянь та на матриці. За яким принципом записуємо елементи в матриці, гадаю, всім зрозуміло. Єдиний коментар: якби у рівняннях були відсутні деякі змінні, то на відповідних місцях у матриці потрібно було б поставити нулі.

Зворотну матрицю знайдемо за формулою:
де - транспонована матриця алгебраїчних доповнень відповідних елементів матриці .

Спочатку знаємося з визначником:

Тут визначник розкритий по першому рядку.

Увага! Якщо , то зворотної матриці немає, і вирішити систему матричним методом неможливо. І тут система вирішується шляхом виключення невідомих (методом Гаусса) .

Тепер потрібно обчислити 9 мінорів та записати їх у матрицю мінорів

Довідка:Корисно знати сенс подвійних підрядкових індексів у лінійній алгебрі. Перша цифра – це номер рядка, в якому знаходиться цей елемент. Друга цифра – це номер стовпця, в якому знаходиться цей елемент:

Тобто подвійний підрядковий індекс вказує, що елемент знаходиться в першому рядку, третьому стовпці, а, наприклад, елемент знаходиться в 3 рядку, 2 стовпці

Нехай є квадратна матриця n-го порядку

Матриця А-1 називається зворотною матрицеюстосовно матриці А, якщо А*А -1 = Е, де Е — одинична матриця n-го порядку.

Одинична матриця- Така квадратна матриця, у якої всі елементи по головній діагоналі, що проходить від лівого верхнього кута до правого нижнього кута, - одиниці, а інші - нулі, наприклад:

зворотна матрицяможе існувати тільки для квадратних матрицьтобто. для тих матриць, у яких число рядків та стовпців збігаються.

Теорема умови існування зворотної матриці

Для того, щоб матриця мала зворотну матрицю, необхідно і достатньо, щоб вона була невиродженою.

Матриця А = (А1, А2, ... Аn) називається невиродженоюякщо вектори-стовпці є лінійно незалежними. Число лінійно незалежних векторів-стовпців матриці називається рангом матриці. Тому можна сказати, що для того, щоб існувала обернена матриця, необхідно і достатньо, щоб ранг матриці дорівнював її розмірності, тобто. r = n.

Алгоритм знаходження зворотної матриці

  1. Записати до таблиці на вирішення систем рівнянь методом Гаусса матрицю А і праворуч (на місце правих частин рівнянь) приписати до неї матрицю Е.
  2. Використовуючи перетворення Жордана, привести матрицю до матриці, що складається з одиничних стовпців; при цьому необхідно одночасно перетворити матрицю Е.
  3. Якщо необхідно, то переставити рядки (рівняння) останньої таблиці так, щоб під матрицею вихідної таблиці А вийшла одинична матриця Е.
  4. Записати зворотну матрицю А-1, яка знаходиться в останній таблиці під матрицею Е вихідної таблиці.
Приклад 1

Для матриці А знайти зворотну матрицю А-1

Рішення: Записуємо матрицю А і праворуч приписуємо одиничну матрицю Е. Використовуючи перетворення Жордана, наводимо матрицю А до одиничної матриці Е. Обчислення наведено у таблиці 31.1.

Перевіримо правильність обчислень множенням вихідної матриці А та зворотної матриці А-1.

В результаті множення матриць вийшла поодинока матриця. Отже, обчислення зроблено правильно.

Відповідь:

Розв'язання матричних рівнянь

Матричні рівняння можуть мати вигляд:

АХ = В, ХА = В, АХВ = С,

де А, В, С - матриці, що задаються, Х - шукана матриця.

Матричні рівняння вирішуються з допомогою множення рівняння зворотні матриці.

Наприклад, щоб знайти матрицю з рівняння необхідно помножити це рівняння на ліворуч.

Отже, щоб знайти рішення рівняння потрібно знайти зворотну матрицю і помножити її на матрицю , що стоять у правій частині рівняння.

Аналогічно вирішуються інші рівняння.

Приклад 2

Розв'язати рівняння АХ = В, якщо

Рішення: Оскільки зворотна матриця дорівнює (див. приклад 1)

Матричний метод в економічному аналізі

Поряд з іншими знаходять застосування також матричні методи. Ці методи базуються на лінійній та векторно-матричній алгебрі. Такі методи застосовуються з метою аналізу складних та багатовимірних економічних явищ. Найчастіше ці методи використовуються за необхідності порівняльної оцінки функціонування організацій та їх структурних підрозділів.

У процесі застосування матричних методів аналізу можна виділити кілька етапів.

На першому етапіздійснюється формування системи економічних показників і на її основі складається матриця вихідних даних , яка є таблицею, в якій за її окремими рядками показуються номери систем (i = 1,2,...,,n), а за вертикальними графами - номери показників (j = 1,2,....,m).

На другому етапіпо кожній вертикальній графі виявляється найбільше з існуючих значень показників, яке приймається за одиницю.

Після цього всі суми, відображені в даній графі поділяють найбільше значення і формується матриця стандартизованих коефіцієнтів .

На третьому етапівсі складові матриці зводять у квадрат. Якщо вони мають різну значимість, то кожному показнику матриці надається певний ваговий коефіцієнт k. Розмір останнього визначається експертним шляхом.

На останньому, четвертому етапізнайдені величини рейтингових оцінок R jгрупуються у порядку їх збільшення чи зменшення.

Викладені матричні методи слід використовувати, наприклад, для порівняльного аналізу різних інвестиційних проектів, а також для оцінки інших економічних показників діяльності організацій.

(Іноді цей спосіб називають ще матричним методом або методом зворотної матриці) вимагає попереднього ознайомлення з таким поняттям як матрична форма запису СЛАУ. Метод зворотної матриці призначений для вирішення тих систем лінійних рівнянь алгебри, у яких визначник матриці системи відмінний від нуля. Звичайно, при цьому мається на увазі, що матриця системи квадратна (поняття визначника існує тільки для квадратних матриць). Суть методу зворотної матриці можна виразити у трьох пунктах:

  1. Записати три матриці: матрицю системи $A$, матрицю невідомих $X$, матрицю вільних членів $B$.
  2. Знайти обернену матрицю $A^(-1)$.
  3. Використовуючи рівність $X=A^(-1)\cdot B$ отримати рішення заданої СЛАУ.

Будь-яку СЛАУ можна записати в матричній формі як $A\cdot X=B$, де $A$ - матриця системи, $B$ - матриця вільних членів, $X$ - матриця невідомих. Нехай матриця $A^(-1)$ існує. Помножимо обидві частини рівності $A\cdot X=B$ на матрицю $A^(-1)$ зліва:

$$A^(-1)\cdot A\cdot X=A^(-1)\cdot B.$$

Оскільки $A^(-1)\cdot A=E$ ($E$ - одинична матриця), то записана вище рівність стане такою:

$$E\cdot X=A^(-1)\cdot B.$$

Оскільки $E\cdot X=X$, то:

$$X=A^(-1)\cdot B.$$

Приклад №1

Вирішити СЛАУ $ \left \( \begin(aligned) & -5x_1+7x_2=29;\\ & 9x_1+8x_2=-11. \end(aligned) \right.$ за допомогою зворотної матриці.

$$ A=\left(\begin(array) (cc) -5 & 7\\ 9 & 8 \end(array)\right);\; B=\left(\begin(array) (c) 29\-11 \end(array)\right);\; X=\left(\begin(array) (c) x_1\x_2 \end(array)\right). $$

Знайдемо зворотний матрицю до матриці системи, тобто. обчислимо $A^(-1)$. У прикладі №2

$$ A^(-1)=-\frac(1)(103)\cdot\left(\begin(array)(cc) 8 & -7\\ -9 & -5\end(array)\right) . $$

Тепер підставимо всі три матриці ($X$, $A^(-1)$, $B$) у рівність $X=A^(-1)\cdot B$. Потім виконаємо множення матриць

$$ \left(\begin(array) (c) x_1\\ x_2 \end(array)\right)= -\frac(1)(103)\cdot\left(\begin(array)(cc) 8 & -7\ -9 & -5\end(array)\right)\cdot \left(\begin(array) (c) 29\\ -11 \end(array)\right)=\\ =-\frac (1)(103)\cdot \left(\begin(array) (c) 8\cdot 29+(-7)\cdot (-11)\ -9\cdot 29+(-5)\cdot (- 11) \end(array)\right)= -\frac(1)(103)\cdot \left(\begin(array) (c) 309\\ -206 \end(array)\right)=\left( \begin(array) (c) -3\ 2\end(array)\right). $$

Отже, ми здобули рівність $\left(\begin(array) (c) x_1\\ x_2 \end(array)\right)=\left(\begin(array) (c) -3\\ 2\end(array ) \ right) $. З цієї рівності маємо: $x_1=-3$, $x_2=2$.

Відповідь: $x_1=-3$, $x_2=2$.

Приклад №2

Вирішити СЛАУ $ \left\(\begin(aligned) & x_1+7x_2+3x_3=-1;\\ & -4x_1+9x_2+4x_3=0;\\ & 3x_2+2x_3=6. \end(aligned)\right . $ методом зворотної матриці.

Запишемо матрицю системи $A$, матрицю вільних членів $B$ та матрицю невідомих $X$.

$$ A=\left(\begin(array) (ccc) 1 & 7 & 3\\ -4 & 9 & 4 \\0 & 3 & 2\end(array)\right);\; B=\left(\begin(array) (c) -1\0\\6\end(array)\right);\; X=\left(\begin(array) (c) x_1\x_2 \x_3 \end(array)\right). $$

Тепер настала черга знайти зворотну матрицю до матриці системи, тобто. знайти $A^(-1)$. У прикладі №3 на сторінці, присвяченій знаходження зворотних матриць, зворотну матрицю було вже знайдено. Скористайтеся готовим результатом і запишемо $A^(-1)$:

$$ A^(-1)=\frac(1)(26)\cdot \left(\begin(array) (ccc) 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & - 3 & 37\end(array) \right). $$

Тепер підставимо всі три матриці ($X$, $A^(-1)$, $B$) у рівність $X=A^(-1)\cdot B$, після чого виконаємо множення матриць у правій частині даної рівності.

$$ \left(\begin(array) (c) x_1\\ x_2 \\ x_3 \end(array)\right)= \frac(1)(26)\cdot \left(\begin(array) (ccc) 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end(array) \right)\cdot \left(\begin(array) (c) -1\\0\ \6\end(array)\right)=\\ =\frac(1)(26)\cdot \left(\begin(array) (c) 6\cdot(-1)+(-5)\cdot 0 +1cdot 6 8cdot (-1)+2cdot 0+(-16)cdot 6 -12cdot (-1)+(-3)cdot 0+37cdot 6 \end(array)\right)=\frac(1)(26)\cdot \left(\begin(array) (c) 0\-104\\234\end(array)\right)=\left( \begin(array) (c) 0\-4\\9\end(array)\right) $$

Отже, ми здобули рівність $\left(\begin(array) (c) x_1\\ x_2 \\ x_3 \end(array)\right)=\left(\begin(array) (c) 0\\-4\ \ 9 \ end (array) \ right) $. З цієї рівності маємо: $x_1=0$, $x_2=-4$, $x_3=9$.

Це поняття, яке узагальнює всі можливі операції, які виробляються з матрицями. Математична матриця – таблиця елементів. Про таку таблицю, де mрядків та nстовпців, кажуть, що це матриця має розмірність mна n.

Загальний вигляд матриці:

Для рішення матрицьнеобхідно розуміти, що таке матриця та знати основні її параметри. Основні елементи матриці:

  • Головна діагональ, що складається з елементів а 11, а 22 …..а mn.
  • Побічна діагональ, що складається з елементів а 1n, а 2n-1 …..а m1.

Основні види матриць:

  • Квадратна - така матриця, де число рядків = числу стовпців ( m=n).
  • Нульова – де всі елементи матриці = 0.
  • Транспонована матриця - матриця У, яка була отримана з вихідної матриці Aшляхом заміни рядків на стовпці.
  • Поодинока - всі елементи головної діагоналі = 1, решта = 0.
  • Зворотна матриця - матриця, при множенні на яку вихідна матриця дає в результаті поодиноку матрицю.

Матриця може бути симетричною щодо головної та побічної діагоналі. Тобто, якщо а 12 = а 21, а 13 = а 31, .... а 23 = а 32 …. а m-1n = а mn-1то матриця симетрична щодо головної діагоналі. Симетричними можуть лише квадратні матриці.

Методи розв'язання матриць.

Майже все методи вирішення матриціполягають у знаходженні її визначника n-го порядку і більшість їх досить громіздкі. Щоб знайти визначник 2-го та 3-го порядку є інші, більш раціональні способи.

Знаходження визначників 2-го порядку.

Для обчислення визначника матриці А 2го порядку, необхідно від твору елементів головної діагоналі відняти добуток елементів побічної діагоналі:

Методи знаходження визначників 3-го порядку.

Нижче наведено правила знаходження визначника 3го порядку.

Спрощено правило трикутника, як одного з методів вирішення матриць, можна зобразити таким чином:

Іншими словами, добуток елементів у першому визначнику, які з'єднані прямими, береться зі знаком "+"; так само, для 2-го визначника - відповідні твори беруться зі знаком "-", тобто за такою схемою:

При рішенні матриць правилом Саррюса, праворуч від визначника дописують перші 2 стовпці та твори відповідних елементів на головній діагоналі та на діагоналях, які їй паралельні, беруть зі знаком "+"; а твори відповідних елементів побічної діагоналі та діагоналей, які їй паралельні, зі знаком "-":

Розкладання визначника по рядку чи стовпцю під час вирішення матриць.

Визначник дорівнює сумі творів елементів рядка визначника на їх додатки алгебри. Зазвичай вибирають той рядок / стовпець, в якому є нулі. Рядок або стовпець, по якому ведеться розкладання, будуть позначати стрілкою.

Приведення визначника до трикутного вигляду під час вирішення матриць.

При рішенні матрицьЗ допомогою приведення визначника до трикутному виду, працюють так: з допомогою найпростіших перетворень над рядками чи стовпцями, визначник стає трикутного вигляду і тоді його значення, відповідно до властивостями визначника, дорівнюватиме добутку елементів, які стоять на головній діагоналі.

Теорема Лапласа під час вирішення матриць.

Вирішуючи матриці за теоремою Лапласа, необхідно знати безпосередньо саму теорему. Теорема Лапласа: Нехай Δ - це визначник n-го порядку. Вибираємо в ньому будь-які kрядків (або стовпців), за умови kn - 1. У такому разі сума творів усіх мінорів k-го порядку, що містяться у вибраних kрядках (стовпцях), на їх алгебраїчні доповнення дорівнюватиме визначнику.

Вирішення зворотної матриці.

Послідовність дій для рішення зворотної матриці:

  1. Зрозуміти, чи квадратна дана матриця. У разі негативної відповіді стає ясно, що зворотної матриці не може бути.
  2. Обчислюємо додатки алгебри.
  3. Складаємо союзну (взаємну, приєднану) матрицю C.
  4. Складаємо зворотну матрицю з додатків алгебри: всі елементи приєднаної матриці Cділимо на визначник початкової матриці. Підсумкова матриця буде шуканою зворотною матрицею щодо заданої.
  5. Перевіряємо виконану роботу: множимо матрицю початкову та отриману матриці, результатом має стати одинична матриця.

Вирішення систем матриць.

Для рішення систем матрицьнайчастіше використовують метод Гауса.

Метод Гаусса — це стандартний спосіб розв'язання систем лінійних рівнянь алгебри (СЛАУ) і він полягає в тому, що послідовно виключаються змінні, тобто, за допомогою елементарних змін систему рівнянь доводять до еквівалентної системи трикутного вигляду і з неї, послідовно, починаючи з останніх (за номером) знаходять кожен елемент системи.

Метод Гаусає найуніверсальнішим і найкращим інструментом для знаходження рішення матриць. Якщо у системи безліч рішень або система є несумісною, то її не можна вирішувати за правилом Крамера і матричним методом.

Метод Гауса передбачає також прямий (приведення розширеної матриці до ступінчастого вигляду, тобто отримання нулів під головною діагоналлю) і зворотний (отримання нулів над головною діагоналлю розширеної матриці) ходи. Прямий хід є метод Гаусса, зворотний - метод Гаусса-Жордана. Метод Гауса-Жордана відрізняється від методу Гауса лише послідовністю виключення змінних.



Нове на сайті

>

Найпопулярніше