بيت اللسان المغلفة ابحث عن مساحة الشكل المستوي عبر الإنترنت. أمثلة

ابحث عن مساحة الشكل المستوي عبر الإنترنت. أمثلة

في هذه المقالة سوف تتعلم كيفية العثور على مساحة الشكل، محدودة بالخطوطباستخدام الحسابات باستخدام التكاملات. لأول مرة نواجه صياغة مثل هذه المشكلة في المدرسة الثانوية، عندما انتهينا للتو من دراسة التكاملات المحددة وحان الوقت لبدء التفسير الهندسي للمعرفة المكتسبة في الممارسة العملية.

إذن، ما هو المطلوب لحل مشكلة إيجاد مساحة الشكل باستخدام التكاملات بنجاح:

  • القدرة على عمل رسومات مختصة؛
  • مهارات حل تكامل محددباستخدام الصيغة الشهيرةنيوتن لايبنتز؛
  • القدرة على "رؤية" خيار الحل الأكثر ربحية - أي. هل تفهم كيف سيكون تنفيذ التكامل أكثر ملاءمة في حالة أو أخرى؟ على طول المحور السيني (OX) أو المحور الصادي (OY)؟
  • حسنًا، أين سنكون بدون الحسابات الصحيحة؟) وهذا يتضمن فهم كيفية حل هذا النوع الآخر من التكاملات والحسابات الرقمية الصحيحة.

خوارزمية حل مشكلة حساب مساحة الشكل المحدد بالخطوط:

1. نحن نبني الرسم. من المستحسن القيام بذلك على قطعة من الورق متقلب، على نطاق واسع. نوقع اسم هذه الوظيفة بقلم رصاص فوق كل رسم بياني. يتم التوقيع على الرسوم البيانية فقط لتسهيل إجراء المزيد من الحسابات. بعد الحصول على رسم بياني للشكل المطلوب، سيكون من الواضح في معظم الحالات على الفور حدود التكامل التي سيتم استخدامها. هذه هي الطريقة التي نحل بها المشكلة طريقة رسومية. ومع ذلك، يحدث أن تكون قيم النهايات كسرية أو غير منطقية. لذلك، يمكنك إجراء حسابات إضافية، انتقل إلى الخطوة الثانية.

2. إذا لم يتم تحديد حدود التكامل بشكل صريح، فإننا نجد نقاط تقاطع الرسوم البيانية مع بعضها البعض ونرى ما إذا كان لدينا الحل الرسوميمع التحليلية.

3. بعد ذلك، تحتاج إلى تحليل الرسم. اعتمادًا على كيفية ترتيب الرسوم البيانية للوظائف، هناك مقاربات مختلفةللعثور على مساحة الشكل. دعونا نفكر أمثلة مختلفةعلى إيجاد مساحة الشكل باستخدام التكاملات.

3.1. النسخة الأكثر كلاسيكية وأبسط من المشكلة هي عندما تحتاج إلى العثور على مساحة شبه منحرف منحني. ما هو شبه منحرف منحني؟ هذا شكل مسطح محدود بالمحور السيني (ص = 0)، مستقيم س = أ، س = بوأي منحنى مستمر في الفترة من أقبل ب. علاوة على ذلك، فإن هذا الرقم غير سلبي ولا يقع تحت المحور السيني. في هذه الحالة، فإن مساحة شبه المنحرف المنحني تساوي عدديًا تكاملًا معينًا، يتم حسابه باستخدام صيغة نيوتن-لايبنتز:

مثال 1 ص = س2 - 3س + 3، س = 1، س = 3، ص = 0.

ما هي الخطوط التي يحدها الشكل؟ لدينا قطع مكافئ ص = س2 - 3س + 3الذي يقع فوق المحور أوه، فهو غير سلبي، لأنه جميع نقاط هذا القطع المكافئ لها قيم موجبة. بعد ذلك، نظرا للخطوط المستقيمة س = 1و س = 3، والتي تعمل بالتوازي مع المحور الوحدة التنظيمية، هي الخطوط الحدودية للشكل على اليسار واليمين. حسنًا ص = 0، وهو أيضًا المحور السيني، الذي يحد الشكل من الأسفل. الشكل الناتج مظلل، كما يمكن رؤيته من الشكل الموجود على اليسار. في في هذه الحالة، يمكنك البدء فورًا في حل المشكلة. أمامنا مثال بسيط على شبه منحرف منحني، والذي سنحله بعد ذلك باستخدام صيغة نيوتن-لايبنيز.

3.2. في الفقرة 3.1 السابقة، قمنا بدراسة الحالة عندما يقع شبه منحرف منحني فوق المحور السيني. الآن فكر في الحالة التي تكون فيها شروط المشكلة هي نفسها، فيما عدا أن الدالة تقع تحت المحور السيني. تتم إضافة علامة ناقص إلى صيغة نيوتن-لايبنتز القياسية. سننظر في كيفية حل هذه المشكلة أدناه.

مثال 2 . حساب مساحة الشكل الذي يحده الخطوط ص = x2 + 6x + 2، x = -4، x = -1، y = 0.

في هذا المثال لدينا القطع المكافئ ص = س2 + 6س + 2، الذي ينبع من المحور أوه، مستقيم س = -4، س = -1، ص = 0. هنا ص = 0يحد الرقم المطلوب من فوق. مباشر س = -4و س = -1هذه هي الحدود التي سيتم من خلالها حساب التكامل المحدد. يتطابق مبدأ حل مشكلة إيجاد مساحة الشكل بشكل شبه كامل مع المثال رقم 1. والفرق الوحيد هو أن الدالة المعطاة ليست موجبة، وهي أيضًا مستمرة على الفاصل الزمني [-4; -1] . ماذا تقصد غير إيجابي؟ كما يتبين من الشكل، فإن الشكل الذي يقع ضمن علامة x المحددة له إحداثيات "سلبية" حصريًا، وهو ما نحتاج إلى رؤيته وتذكره عند حل المشكلة. نبحث عن مساحة الشكل باستخدام صيغة نيوتن-لايبنتز، مع وضع علامة الطرح في البداية فقط.

المقال لم يكتمل.

أ)

حل.

النقطة الأولى والأكثر أهمية في القرار هي بناء الرسم.

لنقم بالرسم:

المعادلة ص=0 يحدد المحور "س"؛

- س=-2 و س = 1 - مستقيم، موازي للمحور الوحدة التنظيمية؛

- ص=س 2 +2 - قطع مكافئ، فروعه متجهة نحو الأعلى، رأسه عند النقطة (0؛2).

تعليق.لبناء القطع المكافئ، يكفي العثور على نقاط تقاطعه مع محاور الإحداثيات، أي. وضع س = 0 العثور على التقاطع مع المحور الوحدة التنظيمية واتخاذ القرار بناء على ذلك معادلة من الدرجة الثانية، أوجد التقاطع مع المحور أوه .

يمكن العثور على قمة القطع المكافئ باستخدام الصيغ:

يمكنك أيضًا إنشاء خطوط نقطة بنقطة.

على الفاصل الزمني [-2;1] الرسم البياني للوظيفة ص=س 2 +2 تقع فوق المحور ثور ، لهذا السبب:

إجابة: س =9 وحدات مربعة

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، "بالعين" نحسب عدد الخلايا في الرسم - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. ومن الواضح تمامًا أنه إذا حصلنا على الجواب، على سبيل المثال: 20 وحدات مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

ماذا تفعل إذا كان شبه المنحرف المنحني موجودًا تحت المحور أوه؟

ب)حساب مساحة الشكل الذي يحده الخطوط ص=-ه س , س = 1 وتنسيق المحاور.

حل.

دعونا نجعل الرسم.

إذا كان شبه منحرف منحني تقع بالكامل تحت المحور أوه , ثم يمكن العثور على مساحتها باستخدام الصيغة:

إجابة: ق=(ه-1) وحدات مربعة "1.72 وحدة مربعة

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

من الناحية العملية، غالبًا ما يقع الشكل في كل من النصف العلوي والسفلي.

مع)أوجد مساحة الشكل المستوي المحدود بالخطوط ص=2س-س 2، ص=-س.

حل.

أولا تحتاج إلى إكمال الرسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ ومستقيم ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية.

نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل أ = 0 ، الحد الأعلى للتكامل ب = 3 .

نحن نبني خطوط معينة: 1. القطع المكافئ - قمة الرأس عند النقطة (1؛1)؛ تقاطع المحور أوه -النقاط (0;0) و (0;2). 2. الخط المستقيم - منصف زاويتي الإحداثيات الثانية والرابعة. والآن انتبه! إذا كان على الجزء [ أ ؛ ب] بعض الوظائف المستمرة و (خ)أكبر من أو يساوي بعض وظيفة مستمرة ز (خ)، فيمكن إيجاد مساحة الشكل المقابل باستخدام الصيغة: .


ولا يهم أين يقع الشكل - فوق المحور أو أسفل المحور، ولكن ما يهم هو الرسم البياني الأعلى (بالنسبة إلى رسم بياني آخر)، والذي هو أدناه. في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

يمكنك بناء خطوط نقطة نقطة، وتصبح حدود التكامل واضحة "بذاتها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية).

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.

على الجزء ، وفقا للصيغة المقابلة:

إجابة: س = 4.5 وحدة مربعة

في الواقع، من أجل العثور على مساحة الشكل، لا تحتاج إلى الكثير من المعرفة بالتكامل غير المحدد والمحدد. تتضمن مهمة "حساب المساحة باستخدام تكامل محدد" دائمًا إنشاء رسم، اكثر بكثير قضايا الساعةستكون معرفتك ومهاراتك في الرسم. وفي هذا الصدد، من المفيد تحديث ذاكرتك بالرسوم البيانية الرئيسية وظائف أولية، وعلى الأقل تكون قادرًا على إنشاء خط مستقيم وقطع زائد.

شبه المنحرف المنحني هو شكل مسطح يحده محور وخطوط مستقيمة ورسم بياني لدالة مستمرة على قطعة لا تتغير الإشارة في هذه الفترة. دع هذا الرقم يكون موجودا ليس أقلالمحور السيني:

ثم مساحة شبه منحرف منحني الأضلاع تساوي عدديا تكاملا محددا. أي تكامل محدد (موجود) له جيد جدًا معنى هندسي.

من وجهة نظر الهندسة، التكامل المحدد هو المساحة.

إنه،تكامل معين (إن وجد) يتوافق هندسيًا مع مساحة شكل معين. على سبيل المثال، النظر في التكامل المحدد. يحدد التكامل منحنى على المستوى الموجود فوق المحور (أولئك الذين يرغبون في ذلك يمكنهم رسم رسم)، والتكامل المحدد نفسه يساوي عدديًا مساحة شبه المنحرف المنحني المقابل.

مثال 1

هذا هو بيان مهمة نموذجية. النقطة الأولى والأكثر أهمية في القرار هي بناء الرسم. علاوة على ذلك، يجب بناء الرسم يمين.

عند إنشاء الرسم، أوصي بالترتيب التالي: في البدايهفمن الأفضل بناء جميع الخطوط المستقيمة (إذا كانت موجودة) وفقط ثم- القطع المكافئ، القطع الزائد، الرسوم البيانية للوظائف الأخرى. يعد بناء الرسوم البيانية للوظائف أكثر ربحية نقطة بنقطة.

في هذه المشكلة، قد يبدو الحل هكذا.
لنرسم الرسم (لاحظ أن المعادلة تحدد المحور):


يوجد على المقطع رسم بياني للوظيفة فوق المحور، لهذا السبب:

إجابة:

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، "بالعين" نحسب عدد الخلايا في الرسم - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

مثال 3

احسب مساحة الشكل المحدد بالخطوط ومحاور الإحداثيات.

حل: لنقم بالرسم:


إذا كان موجودا شبه منحرف منحني تحت المحور(أو على الأقل ليس أعلىالمحور المحدد)، فيمكن إيجاد مساحتها باستخدام الصيغة:


في هذه الحالة:

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

في الممارسة العملية، غالبا ما يقع الرقم في كل من المستوى العلوي والسفلي، وبالتالي، من أبسط المهام المدرسية ننتقل إلى أمثلة أكثر وضوحا.

مثال 4

أوجد مساحة الشكل المستوي المحدود بالخطوط .

حل: أولا تحتاج إلى إكمال الرسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ والخط المستقيم. ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية. نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل هو الحد الأعلى للتكامل.

إذا كان ذلك ممكنا، فمن الأفضل عدم استخدام هذه الطريقة..

إن بناء الخطوط نقطة تلو الأخرى أكثر ربحية وأسرع بكثير، وتصبح حدود التكامل واضحة "في حد ذاتها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية). وسننظر أيضًا في مثل هذا المثال.

دعنا نعود إلى مهمتنا: من الأكثر عقلانية أن نبني أولاً خطًا مستقيمًا وبعد ذلك فقط قطعًا مكافئًا. لنقم بالرسم:

والآن صيغة العمل: إذا كان هناك بعض الوظائف المستمرة في المقطع أكبر من أو يساويبعض الدوال المستمرة، فيمكن إيجاد مساحة الشكل المحدود بالتمثيلات البيانية لهذه الدوال والخطوط باستخدام الصيغة:

هنا لم تعد بحاجة إلى التفكير في مكان وجود الشكل - فوق المحور أو أسفله، وبشكل تقريبي، يهم الرسم البياني الذي هو أعلى(نسبة إلى رسم بياني آخر)، وأيهما أدناه.

في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

قد يبدو الحل المكتمل كما يلي:

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.
على المقطع حسب الصيغة المقابلة:

إجابة:

مثال 4

احسب مساحة الشكل المحدد بالخطوط , , .

حل: أولا، دعونا نرسم:

الشكل الذي نريد إيجاد مساحته مظلل باللون الأزرق(انظر بعناية إلى الحالة - كيف أن الرقم محدود!). لكن من الناحية العملية، وبسبب عدم الانتباه، غالبًا ما ينشأ "خلل" حيث تحتاج إلى العثور على مساحة الشكل المظلل أخضر!

هذا المثال مفيد أيضًا لأنه يحسب مساحة الشكل باستخدام تكاملين محددين.

حقًا:

1) يوجد في الجزء الموجود أعلى المحور رسم بياني لخط مستقيم؛

2) يوجد في المقطع الموجود فوق المحور رسم بياني للقطع الزائد.

من الواضح تمامًا أنه يمكن (ويجب) إضافة المناطق، وبالتالي:

دعونا ننتقل إلى النظر في تطبيقات حساب التفاضل والتكامل. سنقوم في هذا الدرس بتحليل المهمة النموذجية والأكثر شيوعًا حساب مساحة الشكل المستوي باستخدام تكامل محدد. وأخيرًا، دع كل من يبحث عن المعنى في الرياضيات العليا يجده. أنت لا تعرف أبدا. سيتعين علينا تقريبه في الحياة منطقة كوخ ريفيالدوال الأولية وإيجاد مساحتها باستخدام تكامل محدد.

لإتقان المادة بنجاح، يجب عليك:

1) فهم التكامل غير المحدد على الأقل بمستوى متوسط. وبالتالي، يجب على الدمى قراءة الدرس أولا لا.

2) أن تكون قادرًا على تطبيق صيغة نيوتن-لايبنتز وحساب التكامل المحدد. يمكنك إقامة علاقات ودية دافئة مع تكاملات معينة على الصفحة تكامل محدد. أمثلة على الحلول. تتضمن مهمة "حساب المساحة باستخدام تكامل محدد" دائمًا إنشاء رسم، لذا فإن معرفتك ومهاراتك في الرسم ستكون أيضًا مشكلة ذات صلة. كحد أدنى، يجب أن تكون قادرًا على إنشاء خط مستقيم وقطع مكافئ وقطع زائد.

لنبدأ بشبه منحرف منحني. شبه المنحرف المنحني هو شكل مسطح يحده الرسم البياني لبعض الوظائف ذ = F(س)، المحور ثوروالخطوط س = أ; س = ب.

مساحة شبه منحرف منحني الأضلاع تساوي عدديا تكاملا محددا

أي تكامل محدد (موجود) له معنى هندسي جيد جدًا. في الدرس تكامل محدد. أمثلة على الحلولقلنا أن التكامل المحدد هو عدد. والآن حان الوقت لذكر شيء آخر حقيقة مفيدة. من وجهة نظر الهندسة، التكامل المحدد هو المساحة. إنه، التكامل المحدد (إن وجد) يتوافق هندسيًا مع مساحة شكل معين. النظر في التكامل المحدد

متكامل

يحدد منحنى على المستوى (يمكن رسمه إذا رغبت في ذلك)، والتكامل المحدد نفسه يساوي عدديًا مساحة شبه المنحرف المنحني المقابل.



مثال 1

, , , .

هذا هو بيان مهمة نموذجية. النقطة الأكثر أهميةالحلول - الرسم. علاوة على ذلك، يجب بناء الرسم يمين.

عند إنشاء الرسم، أوصي بالترتيب التالي: في البدايهفمن الأفضل بناء جميع الخطوط المستقيمة (إذا كانت موجودة) وفقط ثم- القطع المكافئ، القطع الزائد، الرسوم البيانية للوظائف الأخرى. يمكن العثور على تقنية البناء نقطة بنقطة في المواد المرجعية الرسوم البيانية وخصائص الوظائف الأولية. هناك يمكنك أيضًا العثور على مادة مفيدة جدًا لدرسنا - كيفية بناء القطع المكافئ بسرعة.

في هذه المشكلة، قد يبدو الحل هكذا.

لنقم بالرسم (لاحظ أن المعادلة ذ= 0 يحدد المحور ثور):

لن نقوم بتظليل شبه المنحرف المنحني، فمن الواضح هنا ما هي المنطقة التي نتحدث عنها. ويستمر الحل هكذا:

على المقطع [-2؛ 1] الرسم البياني الوظيفي ذ = س 2+2 تقع فوق المحورثور، لهذا السبب:

إجابة: .

من يواجه صعوبات في حساب التكامل المحدد وتطبيق صيغة نيوتن-لايبنتز

,

الرجوع إلى المحاضرة تكامل محدد. أمثلة على الحلول. بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، نحسب عدد الخلايا في الرسم "بالعين" - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

مثال 2

حساب مساحة الشكل الذي يحده الخطوط xy = 4, س = 2, س= 4 والمحور ثور.

وهذا مثال ل قرار مستقل. الحل الكاملوالإجابة في نهاية الدرس.

ماذا تفعل إذا كان شبه المنحرف المنحني موجودًا تحت المحورثور?

مثال 3

حساب مساحة الشكل الذي يحده الخطوط ذ = السابق, س= 1 ومحاور الإحداثيات.

الحل: لنقم بالرسم:

إذا كان شبه منحرف منحني تقع بالكامل تحت المحور ثور ، فيمكن إيجاد مساحتها باستخدام الصيغة:

في هذه الحالة:

.

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

في الممارسة العملية، غالبا ما يقع الرقم في كل من المستوى العلوي والسفلي، وبالتالي، من أبسط المهام المدرسية ننتقل إلى أمثلة أكثر وضوحا.

مثال 4

أوجد مساحة الشكل المستوي المحدود بالخطوط ذ = 2سس 2 , ذ = -س.

الحل: أولا تحتاج إلى رسم. عند إنشاء رسم في مسائل المساحة، نحن مهتمون أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ ذ = 2سس 2 ومستقيم ذ = -س. ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية. نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل أ= 0، الحد الأعلى للتكامل ب= 3. غالبًا ما يكون بناء الخطوط نقطة بنقطة أكثر ربحية وأسرع، وتصبح حدود التكامل واضحة "بنفسها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية). دعنا نعود إلى مهمتنا: من الأكثر عقلانية أن نبني أولاً خطًا مستقيمًا وبعد ذلك فقط قطعًا مكافئًا. لنقم بالرسم:

دعونا نكرر أنه عند البناء النقطي، غالبًا ما يتم تحديد حدود التكامل "تلقائيًا".

والآن صيغة العمل:

إذا كان على الجزء [ أ; ب] بعض الوظائف المستمرة F(س) أكبر من أو يساويبعض الوظائف المستمرة ز(س) ، فيمكن العثور على مساحة الشكل المقابل باستخدام الصيغة:

هنا لم تعد بحاجة إلى التفكير في مكان وجود الرقم - فوق المحور أو أسفل المحور، ولكن يهم الرسم البياني الذي هو أعلى(نسبة إلى رسم بياني آخر)، وأيهما أدناه.

في المثال قيد النظر، من الواضح أنه في المقطع يقع القطع المكافئ فوق الخط المستقيم، وبالتالي من 2 سسيجب طرح 2 - س.

قد يبدو الحل المكتمل كما يلي:

الرقم المطلوب محدود بقطع مكافئ ذ = 2سس 2 في الأعلى ومستقيم ذ = -سأقل.

على الجزء 2 سس 2 ≥ -س. وفقا للصيغة المقابلة:

إجابة: .

وفي الواقع فإن الصيغة المدرسية لمنطقة شبه المنحرف المنحني في النصف السفلي من المستوى (انظر المثال رقم 3) هي حالة خاصةالصيغ

.

لأن المحور ثورتعطى بواسطة المعادلة ذ= 0، والرسم البياني للوظيفة ز(س) يقع أسفل المحور ثور، الذي - التي

.

والآن بعض الأمثلة للحل الخاص بك

مثال 5

مثال 6

أوجد مساحة الشكل الذي يحده الخطوط

عند حل المسائل التي تتضمن حساب المساحة باستخدام تكامل محدد، تحدث أحيانًا حادثة مضحكة. لقد تم الرسم بشكل صحيح، وكانت الحسابات صحيحة، ولكن بسبب الإهمال... تم العثور على منطقة الرقم الخطأ.

مثال 7

أولاً لنقم بالرسم:

الشكل الذي نريد إيجاد مساحته مظلل باللون الأزرق(انظر بعناية إلى الحالة - كيف أن الرقم محدود!). ولكن من الناحية العملية، وبسبب عدم الانتباه، غالبًا ما يقرر الأشخاص أنهم بحاجة إلى العثور على مساحة الشكل المظلل باللون الأخضر!

هذا المثال مفيد أيضًا لأنه يحسب مساحة الشكل باستخدام تكاملين محددين. حقًا:

1) على الجزء [-1؛ 1] فوق المحور ثوريقع الرسم البياني مباشرة ذ = س+1;

2) على قطعة فوق المحور ثوريقع الرسم البياني للقطع الزائد ذ = (2/س).

من الواضح تمامًا أنه يمكن (ويجب) إضافة المناطق، وبالتالي:

إجابة:

مثال 8

حساب مساحة الشكل الذي يحده الخطوط

دعونا نعرض المعادلات في صيغة "المدرسة".

وقم بعمل رسم نقطة بنقطة:

يتضح من الرسم أن الحد الأعلى لدينا هو "جيد": ب = 1.

ولكن ما هو الحد الأدنى؟! من الواضح أن هذا ليس عددا صحيحا، ولكن ما هو؟

ربما، أ=(-1/3)؟ ولكن أين هو الضمان الذي يتم به الرسم بدقة مثالية، قد يكون ذلك جيدا أ=(-1/4). ماذا لو بنينا الرسم البياني بشكل غير صحيح؟

في مثل هذه الحالات، عليك قضاء وقت إضافي وتوضيح حدود التكامل تحليليا.

دعونا نجد نقاط تقاطع الرسوم البيانية

للقيام بذلك، نحل المعادلة:

.

لذلك، أ=(-1/3).

الحل الآخر تافه. الشيء الرئيسي هو عدم الخلط بين البدائل والعلامات. الحسابات هنا ليست أبسط. على الجزء

, ,

وفقا للصيغة المناسبة:

إجابة:

في ختام الدرس، دعونا نلقي نظرة على مهمتين أكثر صعوبة.

مثال 9

حساب مساحة الشكل الذي يحده الخطوط

الحل: لنرسم هذا الشكل في الرسم.

لرسم رسم نقطة بنقطة تحتاج إلى معرفتها مظهرالجيوب الأنفية. بشكل عام، من المفيد معرفة الرسوم البيانية لجميع الوظائف الأولية، وكذلك بعض قيم الجيب. يمكن العثور عليها في جدول القيم الدوال المثلثية . في بعض الحالات (على سبيل المثال، في هذه الحالة)، من الممكن إنشاء رسم تخطيطي، حيث يجب عرض الرسوم البيانية وحدود التكامل بشكل صحيح بشكل أساسي.

لا توجد مشاكل مع حدود التكامل هنا، فهي تتبع الشرط مباشرة:

- يتغير "x" من صفر إلى "pi". دعونا نتخذ قرارًا آخر:

على قطعة، الرسم البياني للدالة ذ= الخطيئة 3 ستقع فوق المحور ثور، لهذا السبب:

(1) يمكنك أن ترى كيف يتم دمج جيب الجيب وجيب التمام في القوى الفردية في الدرس تكاملات الدوال المثلثية. نحن نقرص جيبًا واحدًا.

(2) نستخدم الهوية المثلثية الرئيسية في النموذج

(3) دعونا نغير المتغير ر=cos س، إذن: يقع فوق المحور، وبالتالي:

.

.

ملحوظة:لاحظ كيف يتم أخذ تكامل المماس المكعب؛ ويتم استخدام نتيجة طبيعية للمتطابقة المثلثية الأساسية هنا

.

المشكلة 1(حول حساب مساحة شبه المنحرف المنحني).

في نظام الإحداثيات الديكارتي المستطيل xOy، يتم إعطاء شكل (انظر الشكل) يحده المحور x، الخطوط المستقيمة x = a، x = b (a بواسطة شبه منحرف منحني الأضلاع. من الضروري حساب مساحة المنحني الخطي شبه منحرف.
حل.تعطينا الهندسة وصفات لحساب مساحات المضلعات وبعض أجزاء الدائرة (القطاع، القطعة). باستخدام الاعتبارات الهندسية، يمكننا فقط إيجاد قيمة تقريبية للمساحة المطلوبة، وذلك على النحو التالي.

دعونا نقسم المقطع [أ؛ ب] (قاعدة شبه منحرف منحني) إلى n أجزاء متساوية؛ يتم تنفيذ هذا التقسيم باستخدام النقاط x 1، x 2، ... x k، ... x n-1. دعونا نرسم خطوطًا مستقيمة عبر هذه النقاط موازية للمحور y. ثم سيتم تقسيم شبه المنحرف المنحني المحدد إلى أجزاء n، إلى أعمدة ضيقة n. مساحة شبه المنحرف بأكمله تساوي مجموع مساحات الأعمدة.

دعونا نفكر في العمود k بشكل منفصل، أي. شبه منحرف منحني قاعدته قطعة. لنستبدله بمستطيل له نفس القاعدة والارتفاع يساوي f(x k) (انظر الشكل). مساحة المستطيل تساوي \(\Delta x_k \) \cdot \Delta x_k \)، حيث \(\Delta x_k \) هو طول المقطع؛ ومن الطبيعي اعتبار المنتج الناتج قيمة تقريبية لمساحة العمود k.

إذا فعلنا الآن الشيء نفسه مع جميع الأعمدة الأخرى، فسنصل إلى النتيجة التالية: المساحة S لشبه منحرف منحني الأضلاع تساوي تقريبًا المساحة S n للشكل المتدرج المكون من n مستطيلات (انظر الشكل):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_(n-1))\Delta x_(n-1) \)
هنا، من أجل توحيد التدوين، نفترض أن a = x 0, b = x n; \(\Delta x_0 \) - طول المقطع، \(\Delta x_1 \) - طول المقطع، وما إلى ذلك؛ في هذه الحالة، كما اتفقنا أعلاه، \(\Delta x_0 = \dots = \Delta x_(n-1) \)

لذلك، \(S \approx S_n \)، وهذه المساواة التقريبية أكثر دقة، كلما زاد n.
بحكم التعريف، يعتقد أن المساحة المطلوبة لشبه منحرف منحني الأضلاع تساوي نهاية التسلسل (S n):
$$ S = \lim_(n \to \infty) S_n $$

المشكلة 2(حول نقل نقطة)
تتحرك نقطة مادية في خط مستقيم. يتم التعبير عن اعتماد السرعة على الوقت بالصيغة v = v(t). أوجد حركة نقطة خلال فترة زمنية [أ؛ ب].
حل.إذا كانت الحركة موحدة، فسيتم حل المشكلة بكل بساطة: s = vt، أي. ق = ت(ب-أ). بالنسبة للحركة غير المتساوية عليك استخدام نفس الأفكار التي بني عليها حل المشكلة السابقة.
1) تقسيم الفاصل الزمني [أ؛ ب] إلى n أجزاء متساوية.
2) اعتبر فترة زمنية وافترض أنه خلال هذه الفترة الزمنية كانت السرعة ثابتة، كما كانت في الوقت t k. لذلك نحن نفترض أن v = v(t k).
3) لنجد القيمة التقريبية لحركة النقطة خلال فترة زمنية، وسنشير إلى هذه القيمة التقريبية بالرمز s k
\(s_k = v(t_k) \Delta t_k \)
4) أوجد القيمة التقريبية للإزاحة:
\(s \approx S_n \) حيث
\(S_n = s_0 + \dots + s_(n-1) = v(t_0)\Delta t_0 + \dots + v(t_(n-1)) \Delta t_(n-1) \)
5) الإزاحة المطلوبة تساوي نهاية التسلسل (S n):
$$ s = \lim_(n \to \infty) S_n $$

دعونا نلخص. حلول المهام المختلفةاختزال إلى نفس النموذج الرياضي. العديد من المشاكل من مختلف مجالات العلوم والتكنولوجيا تؤدي إلى نفس النموذج في عملية الحل. إذا هذا نموذج رياضيتحتاج إلى دراسة خاصة.

مفهوم التكامل المحدد

دعونا نعطي وصفًا رياضيًا للنموذج الذي تم بناؤه في المسائل الثلاث المدروسة للدالة y = f(x)، المستمرة (ولكن ليس بالضرورة غير سالبة، كما تم الافتراض في المسائل قيد النظر) على الفاصل الزمني [a؛ ب]:
1) تقسيم الجزء [أ؛ ب] إلى n أجزاء متساوية؛
2) قم بتكوين المجموع $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_(n-1))\Delta x_(n-1) $$
3) احسب $$ \lim_(n \to \infty) S_n $$

أنا أعرف التحليل الرياضيوقد ثبت أن هذه النهاية موجودة في حالة الدالة المستمرة (أو المستمرة المتعددة التعريف). يسمى تكامل معين للدالة y = f(x) على المقطع [a; ب]والمشار إليها على النحو التالي:
\(\int\limits_a^b f(x) dx \)
يُطلق على الرقمين a وb حدود التكامل (السفلى والعليا، على التوالي).

دعنا نعود إلى المهام التي تمت مناقشتها أعلاه. يمكن الآن إعادة كتابة تعريف المساحة الوارد في المشكلة الأولى على النحو التالي:
\(S = \int\limits_a^b f(x) dx \)
هنا S هي مساحة شبه المنحرف المنحني الموضح في الشكل أعلاه. هذا هو المعنى الهندسي للتكامل المحدد.

يمكن إعادة كتابة تعريف الإزاحة s لنقطة تتحرك في خط مستقيم بسرعة v = v(t) خلال الفترة الزمنية من t = a إلى t = b، الواردة في المشكلة 2، على النحو التالي:

صيغة نيوتن-لايبنتز

أولا، دعونا نجيب على السؤال: ما هي العلاقة بين التكامل المحدد والمشتق العكسي؟

يمكن العثور على الإجابة في المشكلة 2. من ناحية، يتم حساب إزاحة نقطة تتحرك في خط مستقيم بسرعة v = v(t) خلال الفترة الزمنية من t = a إلى t = b بواسطة الصيغة
\(S = \int\limits_a^b v(t) dt \)

من ناحية أخرى، إحداثيات نقطة متحركة هي مشتق عكسي للسرعة - دعنا نشير إليها s(t); هذا يعني أنه يتم التعبير عن الإزاحة s بالصيغة s = s(b) - s(a). ونتيجة لذلك نحصل على:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
حيث s(t) هو المشتق العكسي لـ v(t).

تم إثبات النظرية التالية في سياق التحليل الرياضي.
نظرية. إذا كانت الدالة y = f(x) متصلة على الفاصل الزمني [a; ب]، فإن الصيغة صالحة
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
حيث F(x) هو المشتق العكسي لـ f(x).

عادة ما تسمى الصيغة المحددة صيغة نيوتن-لايبنتزتكريما للفيزيائي الإنجليزي إسحاق نيوتن (1643-1727) والفيلسوف الألماني جوتفريد لايبنتز (1646-1716)، اللذين حصلا عليها بشكل مستقل عن بعضهما البعض وفي وقت واحد تقريبًا.

عمليًا، بدلًا من كتابة F(b) - F(a)، يستخدمون الترميز \(\left. F(x)\right|_a^b \) (يُطلق عليه أحيانًا استبدال مزدوج) وبناء على ذلك، أعد كتابة صيغة نيوتن-لايبنتز بهذا الشكل:
\(S = \int\limits_a^b f(x) dx = \left. F(x)\right|_a^b \)

عند حساب تكامل محدد، ابحث أولاً عن المشتق العكسي، ثم قم بإجراء تعويض مزدوج.

استنادا إلى صيغة نيوتن-لايبنتز، يمكننا الحصول على خاصيتين للتكامل المحدد.

الخاصية 1.تكامل مجموع الوظائف يساوي المبلغالتكاملات:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

الملكية 2.يمكن إخراج العامل الثابت من علامة التكامل:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

حساب مساحات الأشكال المستوية باستخدام التكامل المحدد

باستخدام التكامل، يمكنك حساب مساحات ليس فقط شبه المنحرف المنحني الأضلاع، ولكن أيضًا الأشكال المسطحة أكثر نوع معقد، على سبيل المثال الذي هو موضح في الشكل. الشكل P محدود بخطوط مستقيمة x = a، x = b ورسوم بيانية للوظائف المستمرة y = f(x)، y = g(x)، وعلى المقطع [a؛ ب] المتباينة \(g(x) \leq f(x) \) قائمة. ولحساب المساحة S لهذا الشكل، سنعمل على النحو التالي:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

لذا، فإن المساحة S من الشكل المحدود بخطوط مستقيمة x = a، x = b ورسوم بيانية للوظائف y = f(x)، y = g(x)، مستمرة على القطعة وهكذا لأي x من القطعة [أ؛ ب] يتم تحقيق عدم المساواة \(g(x) \leq f(x) \)، ويتم حسابها بواسطة الصيغة
\(S = \int\limits_a^b (f(x)-g(x))dx \)

جدول التكاملات غير المحددة (المشتقات العكسية) لبعض الدوال

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n+1))(n+1 ) +C \;\; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch ) × +C $$

جديد على الموقع

>

الأكثر شعبية