بيت وقاية التعبير عن y من المعادلة على الانترنت حل المعادلات الخطية البسيطة

التعبير عن y من المعادلة على الانترنت حل المعادلات الخطية البسيطة

في مرحلة التحضير للاختبار النهائي، يحتاج طلاب المدارس الثانوية إلى تحسين معرفتهم بموضوع "المعادلات الأسية". تشير تجربة السنوات الماضية إلى أن مثل هذه المهام تسبب صعوبات معينة لأطفال المدارس. لذلك، يحتاج طلاب المدارس الثانوية، بغض النظر عن مستوى إعدادهم، إلى إتقان النظرية تمامًا، وتذكر الصيغ وفهم مبدأ حل هذه المعادلات. بعد أن تعلموا كيفية التعامل مع هذا النوع من المشاكل، يمكن للخريجين الاعتماد على درجات عالية عند اجتياز امتحان الدولة الموحدة في الرياضيات.

الاستعداد لاختبار الامتحان مع شكولكوفو!

عند مراجعة المواد التي قاموا بتغطيتها، يواجه العديد من الطلاب مشكلة العثور على الصيغ اللازمة لحل المعادلات. الكتاب المدرسي ليس في متناول اليد دائمًا، واختيار المعلومات الضرورية حول موضوع ما على الإنترنت يستغرق وقتًا طويلاً.

تدعو بوابة شكولكوفو التعليمية الطلاب إلى استخدام قاعدة معارفنا. نحن ننفذ بالكامل أسلوب جديدالتحضير للاختبار النهائي. من خلال الدراسة على موقعنا، ستتمكن من تحديد الفجوات في المعرفة والاهتمام بالمهام التي تسبب أكبر قدر من الصعوبة.

قام معلمو شكولكوفو بجمع وتنظيم وتقديم كل ما هو ضروري للنجاح مواد امتحان الدولة الموحدةفي أبسط وأسهل شكل.

يتم عرض التعريفات والصيغ الأساسية في قسم "الخلفية النظرية".

لفهم المادة بشكل أفضل، نوصي بالتدرب على إكمال المهام. راجع بعناية أمثلة المعادلات الأسية مع الحلول المقدمة في هذه الصفحة لفهم خوارزمية الحساب. بعد ذلك، انتقل إلى تنفيذ المهام في قسم "الدلائل". يمكنك البدء بالمهام الأسهل أو الانتقال مباشرة إلى حل المعادلات الأسية المعقدة التي تحتوي على العديد من المجهولات أو . يتم استكمال وتحديث قاعدة بيانات التمارين على موقعنا باستمرار.

يمكن إضافة تلك الأمثلة ذات المؤشرات التي سببت لك صعوبات إلى "المفضلة". بهذه الطريقة يمكنك العثور عليها بسرعة ومناقشة الحل مع معلمك.

لاجتياز امتحان الدولة الموحدة بنجاح، ادرس على بوابة شكولكوفو كل يوم!

في هذا الفيديو سنقوم بتحليل المجموعة بأكملها المعادلات الخطية، والتي يتم حلها باستخدام نفس الخوارزمية - ولهذا السبب يطلق عليها الأبسط.

أولاً، دعونا نحدد: ما هي المعادلة الخطية وأي منها تسمى الأبسط؟

المعادلة الخطية هي تلك التي يوجد فيها متغير واحد فقط، وحتى الدرجة الأولى فقط.

أبسط معادلة تعني البناء:

يتم تقليل جميع المعادلات الخطية الأخرى إلى أبسطها باستخدام الخوارزمية:

  1. قم بتوسيع الأقواس، إن وجدت؛
  2. نقل الحدود التي تحتوي على متغير إلى أحد جانبي علامة التساوي، والمصطلحات التي لا تحتوي على متغير إلى الجانب الآخر؛
  3. أعط مصطلحات مشابهة لليسار واليمين لعلامة المساواة؛
  4. اقسم المعادلة الناتجة على معامل المتغير $x$.

وبطبيعة الحال، هذه الخوارزمية لا تساعد دائما. والحقيقة هي أنه في بعض الأحيان بعد كل هذه المكائد، يكون معامل المتغير $x$ مساويًا للصفر. في هذه الحالة، هناك خياران ممكنان:

  1. المعادلة ليس لها حلول على الإطلاق. على سبيل المثال، عندما يظهر شيء مثل $0\cdot x=8$، أي. على اليسار صفر، وعلى اليمين رقم غير الصفر. في الفيديو أدناه سنلقي نظرة على عدة أسباب وراء حدوث هذا الموقف.
  2. الحل هو كل الارقام الحالة الوحيدة التي يكون فيها ذلك ممكنًا هي عندما يتم اختزال المعادلة إلى البناء $0\cdot x=0$. من المنطقي تمامًا أنه بغض النظر عن $x$ الذي نستبدله، فسيظل "الصفر يساوي صفرًا"، أي. المساواة العددية الصحيحة

الآن دعونا نرى كيف يعمل كل هذا باستخدام أمثلة من الحياة الواقعية.

أمثلة على حل المعادلات

اليوم نحن نتعامل مع المعادلات الخطية، وأبسطها فقط. بشكل عام، المعادلة الخطية تعني أي مساواة تحتوي على متغير واحد بالضبط، ولا تصل إلا إلى الدرجة الأولى.

يتم حل هذه الإنشاءات بنفس الطريقة تقريبًا:

  1. أولًا، تحتاج إلى فك الأقواس، إن وجدت (كما في مثالنا الأخير)؛
  2. ثم الجمع بين مماثلة
  3. وأخيرا، عزل المتغير، أي. انقل كل ما يتعلق بالمتغير – أي المصطلحات التي يحتوي عليها – إلى جهة، وانقل كل ما بقي دونه إلى الجهة الأخرى.

بعد ذلك، كقاعدة عامة، تحتاج إلى إحضار مماثلة على كل جانب من المساواة الناتجة، وبعد ذلك يبقى فقط القسمة على معامل "x"، وسنحصل على الإجابة النهائية.

من الناحية النظرية، يبدو هذا لطيفًا وبسيطًا، ولكن من الناحية العملية، حتى طلاب المدارس الثانوية ذوي الخبرة يمكن أن يرتكبوا أخطاء هجومية في معادلات خطية بسيطة إلى حد ما. عادة، يتم ارتكاب الأخطاء إما عند فتح الأقواس أو عند حساب "الإيجابيات" و"السلبيات".

بالإضافة إلى ذلك، قد يحدث أن المعادلة الخطية ليس لها حلول على الإطلاق، أو أن الحل هو خط الأعداد بأكمله، أي. أي رقم. سننظر في هذه التفاصيل الدقيقة في درس اليوم. لكننا سنبدأ، كما فهمت بالفعل، مع جدا مهام بسيطة.

مخطط لحل المعادلات الخطية البسيطة

أولاً، اسمحوا لي مرة أخرى أن أكتب المخطط بأكمله لحل أبسط المعادلات الخطية:

  1. قم بتوسيع الأقواس، إن وجدت.
  2. نحن نعزل المتغيرات، أي. نقوم بنقل كل ما يحتوي على "X" إلى جانب واحد، وكل شيء بدون "X" إلى الجانب الآخر.
  3. نقدم مصطلحات مماثلة.
  4. نقسم كل شيء على معامل "x".

بالطبع، هذا المخطط لا يعمل دائمًا؛ هناك بعض التفاصيل الدقيقة والحيل فيه، والآن سنتعرف عليها.

حل أمثلة حقيقية للمعادلات الخطية البسيطة

المهمة رقم 1

الخطوة الأولى تتطلب منا فتح الأقواس. لكنهم ليسوا في هذا المثال، لذلك نتخطى هذه الخطوة. في الخطوة الثانية نحتاج إلى عزل المتغيرات. يرجى ملاحظة: نحن نتحدث فقط عن المصطلحات الفردية. دعنا نكتبها:

نقدم مصطلحات مماثلة على اليسار واليمين، ولكن تم القيام بذلك بالفعل هنا. لذلك ننتقل إلى الخطوة الرابعة: القسمة على المعامل:

\[\frac(6x)(6)=-\frac(72)(6)\]

لذلك حصلنا على الجواب.

المهمة رقم 2

يمكننا أن نرى الأقواس في هذه المسألة، لذلك دعونا نوسعها:

نرى على اليسار وعلى اليمين نفس التصميم تقريبًا، ولكن دعونا نتصرف وفقًا للخوارزمية، أي. فصل المتغيرات:

وهنا بعض منها مماثلة:

في أي جذور يعمل هذا؟ الجواب: لأي. لذلك، يمكننا أن نكتب أن $x$ هو أي رقم.

المهمة رقم 3

المعادلة الخطية الثالثة هي الأكثر إثارة للاهتمام:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

هناك عدة أقواس هنا، لكنها غير مضروبة بأي شيء، فهي ببساطة مسبوقة بعلامات مختلفة. دعونا نقسمها:

نقوم بالخطوة الثانية المعروفة لنا بالفعل:

\[-x+x+2x=15-6-12+3\]

دعونا نفعل الرياضيات:

ننفذ الخطوة الأخيرة - نقسم كل شيء على معامل "x":

\[\frac(2x)(x)=\frac(0)(2)\]

أشياء يجب تذكرها عند حل المعادلات الخطية

إذا تجاهلنا المهام البسيطة جدًا، أود أن أقول ما يلي:

  • كما قلت أعلاه، ليس كل معادلة خطية لها حل - في بعض الأحيان ببساطة لا توجد جذور؛
  • وحتى لو كانت هناك جذور، فقد يكون بينها صفر، فلا حرج في ذلك.

الصفر هو نفس الرقم الموجود في الأرقام الأخرى، ويجب ألا تميز ضده بأي شكل من الأشكال أو تفترض أنك إذا حصلت على الصفر، فهذا يعني أنك ارتكبت خطأ ما.

ميزة أخرى تتعلق بفتح الأقواس. يرجى ملاحظة: عندما يكون هناك "ناقص" أمامهم، نقوم بإزالته، ولكن بين قوسين نقوم بتغيير العلامات إلى عكس. وبعد ذلك يمكننا فتحه باستخدام الخوارزميات القياسية: سنحصل على ما رأيناه في الحسابات أعلاه.

إن فهم هذه الحقيقة البسيطة سيساعدك على تجنب ارتكاب أخطاء غبية ومؤذية في المدرسة الثانوية، عندما يكون القيام بهذه الأشياء أمرا مفروغا منه.

حل المعادلات الخطية المعقدة

دعنا ننتقل إلى معادلات أكثر تعقيدا. الآن ستصبح الإنشاءات أكثر تعقيدًا وستظهر دالة تربيعية عند إجراء تحويلات مختلفة. ومع ذلك، لا ينبغي لنا أن نخاف من ذلك، لأنه إذا كنا، وفقا لخطة المؤلف، نحل معادلة خطية، فعند عملية التحويل، سيتم إلغاء جميع أحاديات الحد التي تحتوي على دالة تربيعية بالضرورة.

المثال رقم 1

من الواضح أن الخطوة الأولى هي فتح الأقواس. دعونا نفعل ذلك بعناية فائقة:

والآن دعونا نلقي نظرة على الخصوصية:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

وهنا بعض منها مماثلة:

ومن الواضح أن هذه المعادلة ليس لها حلول، لذلك سنكتب هذا في الإجابة:

\[\varnothing\]

أو لا توجد جذور.

المثال رقم 2

نحن نقوم بنفس الإجراءات. الخطوة الأولى:

دعنا ننقل كل شيء بمتغير إلى اليسار، وبدونه - إلى اليمين:

وهنا بعض منها مماثلة:

من الواضح أن هذه المعادلة الخطية ليس لها حل، لذا سنكتبها بهذه الطريقة:

\[\فارنوثينغ\]،

أو لا توجد جذور.

الفروق الدقيقة في الحل

تم حل كلتا المعادلتين بالكامل. باستخدام هذين التعبيرين كمثال، كنا مقتنعين مرة أخرى أنه حتى في أبسط المعادلات الخطية، قد لا يكون كل شيء بهذه البساطة: يمكن أن يكون هناك جذور واحدة، أو لا شيء، أو عدد لا نهائي من الجذور. في حالتنا، تناولنا معادلتين، ليس لكل منهما جذور.

لكني أود أن ألفت انتباهكم إلى حقيقة أخرى: كيفية العمل مع الأقواس وكيفية فتحها إذا كانت هناك علامة ناقص أمامها. خذ بعين الاعتبار هذا التعبير:

قبل الفتح، تحتاج إلى ضرب كل شيء بـ "X". يرجى ملاحظة: يتضاعف كل مصطلح على حدة. يوجد في الداخل فترتان - على التوالي، فترتان ومضروبة.

وفقط بعد الانتهاء من هذه التحولات التي تبدو بدائية ولكنها مهمة وخطيرة للغاية، يمكنك فتح القوس من وجهة نظر حقيقة وجود علامة ناقص بعدها. نعم، نعم: الآن فقط، عند اكتمال التحولات، نتذكر أن هناك علامة ناقص أمام الأقواس، مما يعني أن كل شيء أدناه يغير العلامات ببساطة. وفي الوقت نفسه، تختفي الأقواس نفسها، والأهم من ذلك، أن "الطرح" الأمامي يختفي أيضًا.

ونفعل نفس الشيء مع المعادلة الثانية:

ليس من قبيل المصادفة أن أنتبه إلى هذه الحقائق الصغيرة التي تبدو غير ذات أهمية. لأن حل المعادلات هو دائمًا سلسلة من التحولات الأولية، حيث يؤدي عدم القدرة على تنفيذ إجراءات بسيطة بوضوح وكفاءة إلى حقيقة أن طلاب المدارس الثانوية يأتون إلي ويتعلمون مرة أخرى حل مثل هذه المعادلات البسيطة.

وبطبيعة الحال، سيأتي اليوم الذي ستصقل فيه هذه المهارات إلى درجة التلقائية. لن تضطر بعد الآن إلى إجراء العديد من التحويلات في كل مرة؛ بل ستكتب كل شيء في سطر واحد. ولكن بينما تتعلم فقط، تحتاج إلى كتابة كل إجراء على حدة.

حل المعادلات الخطية الأكثر تعقيدًا

ما سنقوم بحله الآن، بالكاد يمكن أن يسمى أبسط مهمة، ولكن المعنى يبقى كما هو.

المهمة رقم 1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

دعونا نضرب جميع العناصر في الجزء الأول:

دعونا نفعل بعض الخصوصية:

وهنا بعض منها مماثلة:

فلنكمل الخطوة الأخيرة:

\[\frac(-4x)(4)=\frac(4)(-4)\]

هنا هو جوابنا النهائي. وعلى الرغم من أنه أثناء عملية الحل كانت لدينا معاملات ذات دالة تربيعية، إلا أنها ألغت بعضها البعض، مما يجعل المعادلة خطية وليست تربيعية.

المهمة رقم 2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

لننفذ الخطوة الأولى بعناية: اضرب كل عنصر من القوس الأول بكل عنصر من القوس الثاني. يجب أن يكون هناك إجمالي أربعة مصطلحات جديدة بعد التحويلات:

الآن دعونا نجري عملية الضرب بعناية في كل حد:

لننقل المصطلحات التي تحتوي على "X" إلى اليسار، وتلك التي لا تحتوي على - إلى اليمين:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

وهنا مصطلحات مماثلة:

ومرة أخرى تلقينا الجواب النهائي.

الفروق الدقيقة في الحل

وأهم ملاحظة حول هاتين المعادلتين هي ما يلي: بمجرد أن نبدأ بضرب الأقواس التي تحتوي على أكثر من حد يتم ذلك وفق القاعدة التالية: نأخذ الحد الأول من الأول ونضرب بكل عنصر من الثاني؛ ثم نأخذ العنصر الثاني من الأول ونضربه كذلك في كل عنصر من العنصر الثاني. ونتيجة لذلك، سيكون لدينا أربعة حدود.

حول المجموع الجبري

بهذا المثال الأخير، أود أن أذكر الطلاب ما هو المجموع الجبري. في الرياضيات الكلاسيكية، نعني بـ 1-7 دولارات بناءًا بسيطًا: طرح سبعة من واحد. ونقصد في الجبر ما يلي: إلى العدد "واحد" نضيف رقما آخر وهو "ناقص سبعة". هذه هي الطريقة التي يختلف بها المجموع الجبري عن المجموع الحسابي العادي.

بمجرد إجراء جميع التحولات، كل إضافة وضرب، تبدأ في رؤية إنشاءات مماثلة لتلك الموصوفة أعلاه، فلن تواجه أي مشاكل في الجبر عند العمل مع كثيرات الحدود والمعادلات.

أخيرًا، دعونا نلقي نظرة على بضعة أمثلة أخرى ستكون أكثر تعقيدًا من تلك التي نظرنا إليها للتو، ولحلها، سيتعين علينا توسيع الخوارزمية القياسية لدينا قليلاً.

حل المعادلات بالكسور

لحل مثل هذه المهام، سيتعين علينا إضافة خطوة أخرى إلى الخوارزمية الخاصة بنا. لكن أولاً، دعني أذكرك بالخوارزمية التي لدينا:

  1. افتح الأقواس.
  2. متغيرات منفصلة.
  3. إحضار مماثلة.
  4. القسمة على النسبة.

للأسف، هذه الخوارزمية الرائعة، على الرغم من فعاليتها، ليست مناسبة تمامًا عندما تكون أمامنا كسور. وفيما سنراه أدناه، لدينا كسر على كل من اليسار واليمين في كلتا المعادلتين.

كيفية العمل في هذه الحالة؟ نعم، الأمر بسيط جدًا! للقيام بذلك، تحتاج إلى إضافة خطوة أخرى إلى الخوارزمية، والتي يمكن القيام بها قبل الإجراء الأول وبعده، أي التخلص من الكسور. لذلك ستكون الخوارزمية كما يلي:

  1. تخلص من الكسور.
  2. افتح الأقواس.
  3. متغيرات منفصلة.
  4. إحضار مماثلة.
  5. القسمة على النسبة.

ماذا يعني "التخلص من الكسور"؟ ولماذا يمكن القيام بذلك بعد الخطوة القياسية الأولى وقبلها؟ في الواقع، في حالتنا، جميع الكسور عددية في مقامها، أي. في كل مكان القاسم هو مجرد رقم. ولذلك، إذا ضربنا طرفي المعادلة في هذا العدد، فسنتخلص من الكسور.

المثال رقم 1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

دعونا نتخلص من الكسور في هذه المعادلة:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

يرجى ملاحظة: كل شيء مضروب في "أربعة" مرة واحدة، أي. فقط لأن لديك قوسين لا يعني أن عليك ضرب كل منهما بـ "أربعة". دعنا نكتب:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

الآن دعونا نتوسع:

نعزل المتغير:

نقوم بإجراء تخفيض المصطلحات المماثلة:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

حصلنا قرار نهائيلننتقل إلى المعادلة الثانية.

المثال رقم 2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

هنا نقوم بتنفيذ جميع الإجراءات نفسها:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

حلت المشكلة.

وهذا، في الواقع، هو كل ما أردت أن أخبرك به اليوم.

النقاط الرئيسية

النتائج الرئيسية هي:

  • معرفة خوارزمية حل المعادلات الخطية.
  • القدرة على فتح الأقواس.
  • لا تقلق إذا رأيت وظائف تربيعيةعلى الأرجح، في عملية مزيد من التحولات، سوف تنخفض.
  • هناك ثلاثة أنواع من الجذور في المعادلات الخطية، حتى أبسطها: جذر واحد، وخط الأعداد بأكمله هو جذر، ولا توجد جذور على الإطلاق.

آمل أن يساعدك هذا الدرس في إتقان موضوع بسيط ولكنه مهم جدًا لمزيد من الفهم لجميع الرياضيات. إذا كان هناك شيء غير واضح، فانتقل إلى الموقع وحل الأمثلة المعروضة هناك. لا تنزعج، العديد من الأشياء الأكثر إثارة للاهتمام في انتظاركم!


دعونا نحلل نوعين من الحلول لأنظمة المعادلات:

1. حل النظام باستخدام طريقة الاستبدال.
2. حل النظام عن طريق الجمع (الطرح) لمعادلات النظام حدًا تلو الآخر.

من أجل حل نظام المعادلات عن طريق طريقة الاستبدالتحتاج إلى اتباع خوارزمية بسيطة:
1. اكسبريس. من أي معادلة نعبر عن متغير واحد.
2. بديل. نعوض بالقيمة الناتجة في معادلة أخرى بدلاً من المتغير المعبر عنه.
3. حل المعادلة الناتجة بمتغير واحد. نجد حلا للنظام.

لتحل النظام عن طريق طريقة الجمع (الطرح) مصطلحًا تلو الآخربحاجة ل:
1. حدد المتغير الذي سنعمل له معاملات متطابقة.
2. نقوم بجمع أو طرح المعادلات، مما ينتج عنه معادلة ذات متغير واحد.
3. حل المعادلة الخطية الناتجة. نجد حلا للنظام.

حل النظام هو نقاط تقاطع الرسوم البيانية للوظائف.

دعونا نفكر بالتفصيل في حل الأنظمة باستخدام الأمثلة.

مثال 1:

دعونا نحل بطريقة الاستبدال

حل نظام المعادلات باستخدام طريقة الاستبدال

2x+5y=1 (معادلة واحدة)
x-10y=3 (المعادلة الثانية)

1. اكسبريس
ويمكن ملاحظة أنه يوجد في المعادلة الثانية متغير x بمعامل 1، مما يعني أنه من الأسهل التعبير عن المتغير x من المعادلة الثانية.
س=3+10ص

2. وبعد أن عبرنا عنها، نعوض بـ 3+10y في المعادلة الأولى بدلا من المتغير x.
2(3+10ص)+5ص=1

3. حل المعادلة الناتجة بمتغير واحد.
2(3+10ص)+5ص=1 (افتح القوسين)
6+20ص+5ص=1
25ص=1-6
25ص=-5 |: (25)
ص=-5:25
ص=-0.2

حل نظام المعادلة هو نقاط تقاطع الرسوم البيانية، لذلك نحتاج إلى إيجاد x و y، لأن نقطة التقاطع تتكون من x و y فلنجد x، في النقطة الأولى التي عبرنا عنها نستبدل y.
س=3+10ص
س=3+10*(-0.2)=1

ومن المعتاد أن نكتب النقاط في المقام الأول نكتب المتغير x، وفي المركز الثاني المتغير y.
الجواب: (1؛ -0.2)

المثال رقم 2:

دعونا نحل باستخدام طريقة الجمع (الطرح) حدًا تلو الآخر.

حل نظام المعادلات باستخدام طريقة الجمع

3x-2y=1 (معادلة واحدة)
2x-3y=-10 (المعادلة الثانية)

1. نختار متغيرًا، لنفترض أننا اخترنا x. في المعادلة الأولى، المتغير x له معامل 3، في الثانية - 2. نحن بحاجة إلى جعل المعاملات هي نفسها، ولهذا لدينا الحق في ضرب المعادلات أو القسمة على أي رقم. نضرب المعادلة الأولى في 2، والثانية في 3 ونحصل على المعامل الإجمالي 6.

3x-2y=1 |*2
6س-4ص=2

2x-3y=-10 |*3
6س-9ص=-30

2. اطرح الثانية من المعادلة الأولى للتخلص من المتغير x وحل المعادلة الخطية.
__6س-4ص=2

5ص=32 | :5
ص=6.4

3. ابحث عن x. نعوض بـ y الموجود في أي من المعادلات، دعنا نقول في المعادلة الأولى.
3س-2ص=1
3س-2*6.4=1
3س-12.8=1
3س=1+12.8
3x=13.8 |:3
س=4.6

ستكون نقطة التقاطع x=4.6؛ ص=6.4
الجواب: (4.6؛ 6.4)

هل تريد الاستعداد للامتحانات مجانا؟ مدرس على الانترنت مجانا. لا تمزح.

خدمة حل المعادلات عبر الإنترنت سوف تساعدك على حل أي معادلة. باستخدام موقعنا، لن تتلقى إجابة المعادلة فحسب، بل ستشاهد أيضًا حلاً مفصلاً، أي عرض خطوة بخطوة لعملية الحصول على النتيجة. خدمتنا ستكون مفيدة لطلاب المدارس الثانوية المدارس الثانويةوأولياء أمورهم. سيتمكن الطلاب من الاستعداد للاختبارات والامتحانات واختبار معرفتهم، وسيتمكن الآباء من مراقبة حل المعادلات الرياضية من قبل أطفالهم. تعد القدرة على حل المعادلات مطلبًا إلزاميًا لأطفال المدارس. ستساعدك الخدمة على تثقيف نفسك وتحسين معرفتك في مجال المعادلات الرياضية. بمساعدتها يمكنك حل أي معادلة: تربيعية، مكعبة، غير منطقية، مثلثية، إلخ. خدمة الإنترنتولا تقدر بثمن، لأنه بالإضافة إلى الإجابة الصحيحة، تحصل على حل مفصل لكل معادلة. فوائد حل المعادلات على الانترنت. يمكنك حل أي معادلة عبر الإنترنت على موقعنا مجانًا تمامًا. الخدمة تلقائية بالكامل، ولا يتعين عليك تثبيت أي شيء على جهاز الكمبيوتر الخاص بك، كل ما عليك فعله هو إدخال البيانات وسيقدم لك البرنامج الحل. يتم استبعاد أي أخطاء في الحسابات أو الأخطاء المطبعية. معنا، يعد حل أي معادلة عبر الإنترنت أمرًا سهلاً للغاية، لذا تأكد من استخدام موقعنا لحل أي نوع من المعادلات. ما عليك سوى إدخال البيانات وسيتم إجراء الحساب في ثوان. يعمل البرنامج بشكل مستقل دون تدخل بشري، وتصلك إجابة دقيقة ومفصلة. حل المعادلة في منظر عام. في مثل هذه المعادلة، تكون المعاملات المتغيرة والجذور المطلوبة مترابطة. تحدد أعلى قوة للمتغير ترتيب هذه المعادلة. وبناء على ذلك، لاستخدام المعادلات أساليب مختلفةونظريات لإيجاد الحلول. حل المعادلات من هذا النوع يعني إيجاد الجذور المطلوبة في الصورة العامة. تتيح لك خدمتنا حل حتى المعادلات الجبرية الأكثر تعقيدًا عبر الإنترنت. يمكنك الحصول على حل عام للمعادلة وحل خاص لتلك التي حددتها القيم العدديةمعاملات لحل معادلة جبرية على الموقع، يكفي ملء حقلين فقط بشكل صحيح: الجانب الأيسر والأيمن من المعادلة المحددة. ش المعادلات الجبريةمع المعاملات المتغيرة يوجد عدد لا نهائي من الحلول، وبوضع شروط معينة يتم اختيار الحلول الخاصة من مجموعة الحلول. معادلة من الدرجة الثانية. المعادلة التربيعية لها الصيغة ax^2+bx+c=0 لـ a>0. حل المعادلات نظرة مربعةيعني إيجاد قيم x التي تحمل فيها المساواة ax^2+bx+c=0. للقيام بذلك، ابحث عن القيمة المميزة باستخدام الصيغة D=b^2-4ac. إذا كان المميز أقل من الصفر، فإن المعادلة ليس لها جذور حقيقية (الجذور من المجال ارقام مركبة) ، إذا كان يساوي صفرًا، فإن المعادلة لها جذر حقيقي واحد، وإذا كان المميز أكبر من الصفر، فإن المعادلة لها جذرين حقيقيين، وهما موجودان بالصيغة: D= -b+-sqrt/2a. لحل معادلة تربيعية عبر الإنترنت، ما عليك سوى إدخال معاملات المعادلة (الأعداد الصحيحة أو الكسور أو الكسور العشرية). إذا كانت هناك علامات طرح في المعادلة، فيجب عليك وضع علامة الطرح أمام الحدود المقابلة لها في المعادلة. يمكنك حل معادلة تربيعية عبر الإنترنت اعتمادًا على المعلمة، أي المتغيرات في معاملات المعادلة. خدمتنا عبر الإنترنت للعثور على حلول عامة. المعادلات الخطية. لحل المعادلات الخطية (أو أنظمة المعادلات)، يتم استخدام أربع طرق رئيسية عمليًا. وسنصف كل طريقة بالتفصيل. طريقة الاستبدال. يتطلب حل المعادلات باستخدام طريقة الاستبدال التعبير عن متغير واحد بدلالة المتغيرات الأخرى. بعد ذلك، يتم استبدال التعبير في معادلات أخرى للنظام. ومن هنا جاء اسم طريقة الحل، أي أنه بدلاً من المتغير يتم استبدال تعبيره من خلال المتغيرات المتبقية. من الناحية العملية، تتطلب الطريقة حسابات معقدة، على الرغم من سهولة فهمها، لذا فإن حل مثل هذه المعادلة عبر الإنترنت سيساعد في توفير الوقت وتسهيل العمليات الحسابية. تحتاج فقط إلى الإشارة إلى عدد المجهولين في المعادلة وملء البيانات من المعادلات الخطية، ثم ستقوم الخدمة بإجراء الحساب. طريقة غاوس. تعتمد الطريقة على أبسط تحويلات النظام للوصول إلى نظام مكافئ مثلثة المظهر. ومنه يتم تحديد المجهولين واحدًا تلو الآخر. في الممارسة العملية، مطلوب حل مثل هذه المعادلة عبر الإنترنت وصف تفصيليوبفضل ذلك سيكون لديك فهم جيد للطريقة الغوسية لحل أنظمة المعادلات الخطية. اكتب نظام المعادلات الخطية بالتنسيق الصحيح وخذ في الاعتبار عدد المجهولين من أجل حل النظام بدقة. طريقة كريمر. تحل هذه الطريقة أنظمة المعادلات في الحالات التي يكون فيها للنظام حل فريد. رئيسي عملية حسابيةهنا هو حساب محددات المصفوفة. يتم حل المعادلات باستخدام طريقة كرامر عبر الإنترنت، وتتلقى النتيجة على الفور مع وصف كامل ومفصل. يكفي فقط ملء النظام بالمعاملات واختيار عدد المتغيرات غير المعروفة. طريقة المصفوفة. تتكون هذه الطريقة من جمع معاملات المجهولات في المصفوفة A، والمجهولات في العمود X، والمصطلحات الحرة في العمود B. وبالتالي، يتم اختزال نظام المعادلات الخطية إلى معادلة مصفوفية بالصيغة AxX = B. هذه المعادلة لها حل فريد فقط إذا كان محدد المصفوفة A يختلف عن الصفر، وإلا فلن يكون للنظام حلول، أو عدد لا نهائي من الحلول. حل المعادلات طريقة المصفوفةهو العثور على مصفوفة معكوسةأ.

إن استخدام المعادلات منتشر على نطاق واسع في حياتنا. يتم استخدامها في العديد من العمليات الحسابية وبناء الهياكل وحتى الألعاب الرياضية. استخدم الإنسان المعادلات في العصور القديمة، ومنذ ذلك الحين زاد استخدامها. معادلات القوة أو المعادلات الأسية هي معادلات تكون فيها المتغيرات ذات قوى وأساسها رقم. على سبيل المثال:

حل المعادلة الأسية يقلل إلى 2 تماما إجراءات بسيطة:

1. أنت بحاجة إلى التحقق مما إذا كانت أسس المعادلة على اليمين واليسار هي نفسها. إذا لم تكن الأسباب واحدة، فإننا نبحث عن خيارات لحل هذا المثال.

2. بعد أن تصبح القواعد واحدة، نساوي الدرجات ونحل المعادلة الجديدة الناتجة.

لنفترض أن لدينا معادلة أسية بالشكل التالي:

يجدر البدء بحل هذه المعادلة بتحليل الأساس. الأساسان مختلفان - 2 و4، ولكن لحلهما نحتاج إلى أن تكونا متماثلتين، لذلك نقوم بتحويل 4 باستخدام الصيغة التالية -\[ (a^n)^m = a^(nm):\]

اضف إليه المعادلة الأصلية:

لنخرجها من الأقواس \

دعونا نعرب \

وبما أن الدرجات واحدة، فإننا نتخلص منها:

إجابة: \

أين يمكنني حل معادلة أسية باستخدام أحد الحلول عبر الإنترنت؟

يمكنكم حل المعادلة على موقعنا https://site. سيسمح لك الحل المجاني عبر الإنترنت بحل المعادلات عبر الإنترنت بأي تعقيد في غضون ثوانٍ. كل ما عليك فعله هو ببساطة إدخال بياناتك في الحل. يمكنك أيضًا مشاهدة تعليمات الفيديو ومعرفة كيفية حل المعادلة على موقعنا. وإذا كان لا يزال لديك أسئلة، يمكنك طرحها في مجموعة VKontakte الخاصة بنا http://vk.com/pocketteacher. انضم إلى مجموعتنا، نحن سعداء دائمًا بمساعدتك.



جديد على الموقع

>

الأكثر شعبية