Dom Zęby mądrości Zależność liniowa i niezależność wektorów. Wektory liniowo zależne i liniowo niezależne

Zależność liniowa i niezależność wektorów. Wektory liniowo zależne i liniowo niezależne

Zadanie 1. Sprawdź, czy układ wektorów jest liniowo niezależny. Układ wektorów będzie określony przez macierz układu, której kolumny składają się ze współrzędnych wektorów.

.

Rozwiązanie. Niech kombinacja liniowa równy zeru. Zapisując tę ​​równość we współrzędnych, otrzymujemy następujący system równania:

.

Taki układ równań nazywa się trójkątnym. Ona ma tylko jedno rozwiązanie . Dlatego wektory liniowo niezależny.

Zadanie 2. Sprawdź, czy układ wektorów jest liniowo niezależny.

.

Rozwiązanie. Wektory są liniowo niezależne (patrz Problem 1). Udowodnijmy, że wektor jest liniową kombinacją wektorów . Współczynniki rozszerzalności wektora wyznaczane są z układu równań

.

System ten, podobnie jak trójkątny, posiada unikalne rozwiązanie.

Dlatego układ wektorów liniowo zależne.

Komentarz. Nazywa się macierze tego samego typu co w Zadaniu 1 trójkątny , a w zadaniu 2 – schodkowy trójkątny . Zagadnienie liniowej zależności układu wektorów można łatwo rozwiązać, jeśli macierz złożona ze współrzędnych tych wektorów jest trójkątem schodkowym. Jeśli macierz nie ma specjalnej formy, to użyj konwersje ciągów elementarnych , zachowując liniowe zależności między kolumnami, można je sprowadzić do postaci trójkąta schodkowego.

Podstawowe konwersje ciągów macierze (EPS) nazywane są następującymi operacjami na macierzy:

1) przegrupowanie linii;

2) pomnożenie ciągu przez liczbę niezerową;

3) dodanie kolejnego ciągu do ciągu pomnożonego przez dowolną liczbę.

Zadanie 3. Znajdź maksymalny liniowo niezależny podsystem i oblicz rząd układu wektorów

.

Rozwiązanie. Zredukujmy macierz układu za pomocą EPS do postaci trójkąta schodkowego. Aby wyjaśnić procedurę, oznaczamy linię z numerem macierzy, która ma zostać przekształcona przez symbol . Kolumna za strzałką wskazuje działania na wierszach konwertowanej macierzy, które należy wykonać, aby otrzymać wiersze nowej macierzy.


.

Oczywiście dwie pierwsze kolumny wynikowej macierzy są liniowo niezależne, trzecia kolumna jest ich liniową kombinacją, a czwarta nie zależy od pierwszych dwóch. Wektory nazywane są podstawowymi. Tworzą maksymalnie liniowo niezależny podsystem systemu , a ranga systemu wynosi trzy.



Podstawa, współrzędne

Zadanie 4. Znajdź bazę i współrzędne wektorów z tej bazy na zbiorze wektorów geometrycznych, których współrzędne spełniają warunek .

Rozwiązanie. Zbiór jest płaszczyzną przechodzącą przez początek układu współrzędnych. Dowolna baza na płaszczyźnie składa się z dwóch niewspółliniowych wektorów. Współrzędne wektorów w wybranej bazie są określone przez rozwiązanie odpowiedniego układu równania liniowe.

Istnieje inny sposób rozwiązania tego problemu, polegający na znalezieniu podstawy za pomocą współrzędnych.

Współrzędne przestrzenie nie są współrzędnymi na płaszczyźnie, ponieważ są ze sobą powiązane relacją , to znaczy, że nie są niezależne. Zmienne niezależne i (nazywane są wolnymi) jednoznacznie definiują wektor na płaszczyźnie i dlatego można je wybrać jako współrzędne w . Następnie podstawa składa się z wektorów leżących w zbiorach wolnych zmiennych i odpowiadających im I , to jest .

Zadanie 5. Znajdź bazę i współrzędne wektorów na tej podstawie na zbiorze wszystkich wektorów w przestrzeni, których współrzędne nieparzyste są sobie równe.

Rozwiązanie. Wybierzmy, podobnie jak w poprzednim zadaniu, współrzędne w przestrzeni.

Ponieważ , a następnie wolne zmienne jednoznacznie określają wektor z i dlatego są współrzędnymi. Odpowiednia baza składa się z wektorów.

Zadanie 6. Znajdź bazę i współrzędne wektorów na tej podstawie na zbiorze wszystkich macierzy postaci , Gdzie – liczby dowolne.

Rozwiązanie. Każda macierz jest jednoznacznie reprezentowana w postaci:

Relacja ta jest rozwinięciem wektora względem podstawy
ze współrzędnymi .

Zadanie 7. Znajdź wymiar i podstawę liniowego kadłuba układu wektorów

.

Rozwiązanie. Korzystając z EPS, przekształcamy macierz ze współrzędnych wektorów układu do postaci trójkąta schodkowego.




.

Kolumny ostatnie macierze są liniowo niezależne, a kolumny wyrażane poprzez nie liniowo. Dlatego wektory stanowić podstawę , I .

Komentarz. Podstawa w jest wybrany niejednoznacznie. Na przykład wektory stanowią również podstawę .

Zależność liniowa i niezależność liniowa wektory.
Baza wektorów. Afiniczny układ współrzędnych

Na widowni stoi wózek z czekoladkami, a każdy dzisiejszy gość otrzyma słodką parę – geometrię analityczną z algebrą liniową. W tym artykule poruszymy jednocześnie dwa działy wyższej matematyki i zobaczymy, jak współistnieją one w jednym opakowaniu. Zrób sobie przerwę, zjedz Twix! ... cholera, co za bzdury. Chociaż ok, nie zdobędę punktów, ostatecznie powinieneś mieć pozytywne nastawienie do nauki.

Liniowa zależność wektorów, niezależność wektora liniowego, baza wektorów i inne terminy mają nie tylko interpretację geometryczną, ale przede wszystkim znaczenie algebraiczne. Samo pojęcie „wektora” z punktu widzenia algebry liniowej nie zawsze jest „zwykłym” wektorem, który możemy przedstawić na płaszczyźnie lub w przestrzeni. Dowodów nie trzeba szukać daleko, spróbuj narysować wektor przestrzeni pięciowymiarowej . Albo wektor pogodowy, po który właśnie pojechałem do Gismeteo: – temperatura i Ciśnienie atmosferyczne odpowiednio. Przykład jest oczywiście niepoprawny z punktu widzenia właściwości przestrzeni wektorowej, niemniej jednak nikt nie zabrania sformalizowania tych parametrów jako wektora. Oddech jesieni...

Nie, nie będę Was zanudzać teorią, liniowymi przestrzeniami wektorowymi, zadaniem jest to zrobić zrozumieć definicje i twierdzenia. Nowe terminy (zależność liniowa, niezależność, kombinacja liniowa, podstawa itp.) dotyczą wszystkich wektory z algebraicznego punktu widzenia, ale zostaną podane przykłady geometryczne. Dzięki temu wszystko jest proste, dostępne i przejrzyste. Oprócz problemów z geometrią analityczną rozważymy także kilka typowych zadań algebra. Aby opanować materiał, wskazane jest zapoznanie się z lekcjami Wektory dla manekinów I Jak obliczyć wyznacznik?

Liniowa zależność i niezależność wektorów płaskich.
Podstawa płaska i afiniczny układ współrzędnych

Rozważmy płaszczyznę biurka komputerowego (tylko stół, stolik nocny, podłoga, sufit, co tylko chcesz). Zadanie będzie następne kroki:

1) Wybierz podstawę płaszczyzny. Z grubsza rzecz biorąc, blat ma długość i szerokość, więc intuicyjnie wiadomo, że do zbudowania podstawy potrzebne będą dwa wektory. Jeden wektor to zdecydowanie za mało, trzy wektory to za dużo.

2) Na podstawie wybranej podstawy ustawić układ współrzędnych(siatka współrzędnych), aby przypisać współrzędne wszystkim obiektom na stole.

Nie zdziw się, na początku wyjaśnienia będą na palcach. Co więcej, na twoim. Proszę umieścić palec wskazujący lewa ręka na krawędzi blatu, tak aby patrzył na monitor. To będzie wektor. Teraz miejsce mały palec prawa ręka na krawędzi stołu w ten sam sposób - tak, aby był skierowany w stronę ekranu monitora. To będzie wektor. Uśmiechnij się, wyglądasz świetnie! Co możemy powiedzieć o wektorach? Wektory danych współliniowy, co znaczy liniowy wyrażane przez siebie:
, cóż, lub odwrotnie: , gdzie jest pewna liczba różna od zera.

Możesz zobaczyć zdjęcie tego działania w klasie. Wektory dla manekinów , gdzie wyjaśniłem zasadę mnożenia wektora przez liczbę.

Czy Twoje palce postawią podstawę na płaszczyźnie biurka komputerowego? Oczywiście, że nie. Wektory współliniowe przemieszczają się tam i z powrotem sam kierunku, a płaszczyzna ma długość i szerokość.

Takie wektory nazywane są liniowo zależne.

Odniesienie: Słowa „liniowy”, „liniowy” oznaczają fakt, że w równaniach i wyrażeniach matematycznych nie ma kwadratów, sześcianów, innych potęg, logarytmów, sinusów itp. Istnieją tylko wyrażenia i zależności liniowe (1. stopnia).

Dwa wektory płaskie liniowo zależne wtedy i tylko wtedy gdy są współliniowe.

Skrzyżuj palce na stole tak, aby powstał między nimi kąt inny niż 0 lub 180 stopni. Dwa wektory płaskieliniowy Nie zależne wtedy i tylko wtedy, gdy nie są współliniowe. Tak więc uzyskano podstawę. Nie trzeba się wstydzić, że podstawa okazała się „przekrzywiona” nieprostopadłymi wektorami o różnych długościach. Już wkrótce przekonamy się, że do jego konstrukcji odpowiedni jest nie tylko kąt 90 stopni i nie tylko wektory jednostkowe o jednakowej długości

Każdy wektor samolotu jedyny sposób rozwija się według podstawy:
, Gdzie - liczby rzeczywiste. Numery są nazywane współrzędne wektora na tej podstawie.

Mówi się też, że wektorprzedstawiony jako kombinacja liniowa wektory bazowe. Oznacza to, że wyrażenie nazywa się rozkład wektorowywedług podstawy Lub kombinacja liniowa wektory bazowe.

Na przykład możemy powiedzieć, że wektor jest rozłożony wzdłuż ortonormalnej podstawy płaszczyzny lub możemy powiedzieć, że jest on reprezentowany jako liniowa kombinacja wektorów.

Sformułujmy definicja podstawy formalnie: Podstawa samolotu nazywa się parą liniowo niezależnych (niewspółliniowych) wektorów, , w której każdy wektor płaski jest liniową kombinacją wektorów bazowych.

Istotnym punktem definicji jest fakt, że wektory są brane w określonej kolejności. Bazy – to dwie zupełnie różne bazy! Jak mówią, nie można zastąpić małego palca lewej ręki małym palcem prawej ręki.

Ustaliliśmy podstawę, ale nie wystarczy ustawić siatkę współrzędnych i przypisać współrzędne każdemu elementowi na biurku komputera. Dlaczego to nie wystarczy? Wektory są swobodne i wędrują po całej płaszczyźnie. Jak więc przypisać współrzędne do tych małych brudnych miejsc na stole pozostałych po szalonym weekendzie? Potrzebny jest punkt wyjścia. A taki punkt orientacyjny to punkt znany wszystkim - pochodzenie współrzędnych. Rozumiemy układ współrzędnych:

Zacznę od systemu „szkolnego”. Już na lekcji wprowadzającej Wektory dla manekinów Podkreśliłem pewne różnice pomiędzy prostokątnym układem współrzędnych a bazą ortonormalną. Oto standardowe zdjęcie:

Kiedy o tym mówią prostokątny układ współrzędnych, to najczęściej oznaczają początek, osie współrzędnych i skalę wzdłuż osi. Spróbuj wpisać w wyszukiwarkę „prostokątny układ współrzędnych”, a zobaczysz, że wiele źródeł podpowie Ci o osiach współrzędnych znanych z V-VI klasy i o tym, jak nanosić punkty na płaszczyznę.

Z drugiej strony wydaje się, że prostokątny układ współrzędnych można całkowicie zdefiniować w oparciu o bazę ortonormalną. I to prawie prawda. Sformułowanie jest następujące:

pochodzenie, I ortonormalny podstawa jest ustalona Kartezjański układ współrzędnych płaszczyzny prostokątnej . Oznacza to prostokątny układ współrzędnych zdecydowanie jest zdefiniowany przez pojedynczy punkt i dwa jednostkowe wektory ortogonalne. Dlatego widzisz rysunek, który podałem powyżej - w zadaniach geometrycznych często (ale nie zawsze) rysowane są zarówno wektory, jak i osie współrzędnych.

Myślę, że każdy to rozumie, używając punktu (początku) i podstawy ortonormalnej DOWOLNY PUNKT na płaszczyźnie i DOWOLNY WEKTOR na płaszczyźnie można przypisać współrzędne. Mówiąc obrazowo, „wszystko na płaszczyźnie można policzyć”.

Czy wektory współrzędnych muszą być jednostkowe? Nie, mogą mieć dowolną niezerową długość. Rozważmy punkt i dwa wektory ortogonalne o dowolnej niezerowej długości:


Taka podstawa nazywa się prostokątny. Początek współrzędnych z wektorami jest określony przez siatkę współrzędnych, a każdy punkt na płaszczyźnie, dowolny wektor ma swoje współrzędne w danej bazie. Na przykład lub. Oczywistą niedogodnością jest to, że wektory współrzędnych V przypadek ogólny mają różne długości inne niż jedność. Jeśli długości są równe jedności, wówczas uzyskuje się zwykłą podstawę ortonormalną.

! Notatka : w bazie ortogonalnej, a także poniżej w podstawach afinicznych płaszczyzny i przestrzeni, uwzględniane są jednostki wzdłuż osi WARUNKOWY. Na przykład jedna jednostka na osi x zawiera 4 cm, jedna jednostka na osi rzędnych zawiera 2 cm.Ta informacja wystarczy, aby w razie potrzeby zamienić „niestandardowe” współrzędne na „nasze zwykłe centymetry”.

Drugie pytanie, na które właściwie już udzielono odpowiedzi, brzmi: czy kąt między wektorami bazowymi musi wynosić 90 stopni? NIE! Jak mówi definicja, wektory bazowe muszą być tylko niewspółliniowe. Odpowiednio kąt może wynosić dowolna wartość z wyjątkiem 0 i 180 stopni.

Punkt na płaszczyźnie tzw pochodzenie, I niewspółliniowy wektory, , ustawić układ współrzędnych płaszczyzny afinicznej :


Czasami nazywany jest taki układ współrzędnych skośny system. Jako przykład, rysunek pokazuje punkty i wektory:

Jak rozumiesz, afiniczny układ współrzędnych jest jeszcze mniej wygodny, nie działają w nim wzory na długości wektorów i odcinków, które omówiliśmy w drugiej części lekcji Wektory dla manekinów , wiele pysznych receptur związanych Iloczyn skalarny wektorów . Ale zasady dodawania wektorów i mnożenia wektora przez liczbę obowiązują, wzory na dzielenie odcinka pod tym względem, a także kilka innych rodzajów problemów, którym przyjrzymy się wkrótce.

Wniosek jest taki, że najwygodniejszym szczególnym przypadkiem afinicznego układu współrzędnych jest kartezjański układ prostokątny. Dlatego najczęściej musisz ją widywać, moja droga. ...Jednak wszystko w tym życiu jest względne - jest wiele sytuacji, w których kąt skośny (lub jakiś inny, np. polarny) system współrzędnych. A humanoidom mogą spodobać się takie systemy =)

Przejdźmy do części praktycznej. Wszystkie problemy z tej lekcji obowiązują zarówno dla prostokątnego układu współrzędnych, jak i dla ogólnego przypadku afinicznego. Nie ma tu nic skomplikowanego, cały materiał jest dostępny nawet dla ucznia.

Jak określić współliniowość wektorów płaskich?

Typowa rzecz. Aby uzyskać dwa wektory płaskie były współliniowe, konieczne i wystarczające jest, aby odpowiadające im współrzędne były proporcjonalne Zasadniczo jest to szczegółowy opis oczywistej relacji współrzędna po współrzędnej.

Przykład 1

a) Sprawdź, czy wektory są współliniowe .
b) Czy wektory tworzą bazę? ?

Rozwiązanie:
a) Sprawdźmy, czy istnieje dla wektorów współczynnik proporcjonalności, taki, że równości są spełnione:

Na pewno opowiem Ci o aplikacji typu „foppish”. tej zasady, co w praktyce sprawdza się całkiem nieźle. Chodzi o to, żeby od razu uzupełnić proporcję i sprawdzić, czy się zgadza:

Zróbmy proporcję ze stosunków odpowiednich współrzędnych wektorów:

Skróćmy:
, zatem odpowiednie współrzędne są proporcjonalne, zatem

Zależność można odwrócić; jest to opcja równoważna:

Do autotestu można wykorzystać fakt, że wektory współliniowe wyrażają się liniowo względem siebie. W w tym przypadku istnieją równości . Ich zasadność można łatwo zweryfikować poprzez elementarne operacje na wektorach:

b) Dwa wektory płaskie tworzą bazę, jeśli nie są współliniowe (liniowo niezależne). Badamy wektory pod kątem kolinearności . Stwórzmy system:

Z pierwszego równania wynika, że ​​, z drugiego równania wynika, że ​​, co oznacza system jest niespójny (brak rozwiązań). Zatem odpowiednie współrzędne wektorów nie są proporcjonalne.

Wniosek: wektory są liniowo niezależne i tworzą bazę.

Uproszczona wersja rozwiązania wygląda następująco:

Zróbmy proporcję z odpowiednich współrzędnych wektorów :
, co oznacza, że ​​wektory te są liniowo niezależne i stanowią bazę.

Zwykle opcja ta nie jest odrzucana przez recenzentów, jednak problem pojawia się w przypadkach, gdy niektóre współrzędne są równe zeru. Lubię to: . Lub tak: . Lub tak: . Jak tu zastosować proporcję? (w rzeczywistości nie można dzielić przez zero). Z tego powodu uproszczone rozwiązanie nazwałem „fantastycznym”.

Odpowiedź: a), b) forma.

Mały kreatywny przykład dla niezależna decyzja:

Przykład 2

Przy jakiej wartości parametru znajdują się wektory czy będą współliniowe?

W przykładowym rozwiązaniu parametr znajduje się poprzez proporcję.

Istnieje elegancki algebraiczny sposób sprawdzenia wektorów pod kątem kolinearności.Usystematyzujmy naszą wiedzę i dodajmy ją jako piąty punkt:

Dla dwóch wektorów płaskich poniższe stwierdzenia są równoważne:

2) wektory stanowią bazę;
3) wektory nie są współliniowe;

+ 5) wyznacznik złożony ze współrzędnych tych wektorów jest niezerowy.

Odpowiednio, poniższe przeciwstawne stwierdzenia są równoważne:
1) wektory są liniowo zależne;
2) wektory nie stanowią bazy;
3) wektory są współliniowe;
4) wektory mogą być wyrażane liniowo przez siebie;
+ 5) wyznacznik złożony ze współrzędnych tych wektorów jest równy zeru.

Naprawdę mam taką nadzieję ten moment rozumiesz już wszystkie terminy i stwierdzenia, z którymi się spotykasz.

Przyjrzyjmy się bliżej nowemu, piątemu punktowi: dwa wektory płaskie są współliniowe wtedy i tylko wtedy, gdy wyznacznik złożony ze współrzędnych danych wektorów jest równy zeru:. Do użycia tej cechy Naturalnie, trzeba to umieć znaleźć determinanty .

Zdecydujmy Przykład 1 w drugi sposób:

a) Obliczmy wyznacznik złożony ze współrzędnych wektorów :
, co oznacza, że ​​wektory te są współliniowe.

b) Dwa wektory płaskie tworzą bazę, jeśli nie są współliniowe (liniowo niezależne). Obliczmy wyznacznik złożony ze współrzędnych wektorowych :
, co oznacza, że ​​wektory są liniowo niezależne i stanowią bazę.

Odpowiedź: a), b) forma.

Wygląda znacznie bardziej kompaktowo i ładniej niż rozwiązanie o proporcjach.

Za pomocą rozważanego materiału można ustalić nie tylko współliniowość wektorów, ale także udowodnić równoległość odcinków i linii prostych. Rozważmy kilka problemów z określonymi kształtami geometrycznymi.

Przykład 3

Dane są wierzchołki czworokąta. Udowodnić, że czworokąt jest równoległobokiem.

Dowód: Nie ma potrzeby tworzenia rysunku w zadaniu, ponieważ rozwiązanie będzie czysto analityczne. Przypomnijmy definicję równoległoboku:
Równoległobok Nazywa się czworokąt, którego przeciwne boki są równoległe parami.

Należy zatem udowodnić:
1) równoległość przeciwnych stron i;
2) równoległość przeciwnych stron i.

Udowodnimy:

1) Znajdź wektory:


2) Znajdź wektory:

Wynikiem jest ten sam wektor („według szkoły” – wektory równe). Kolinearność jest dość oczywista, ale lepiej sformalizować decyzję jasno, z układem. Obliczmy wyznacznik złożony ze współrzędnych wektorowych:
, co oznacza, że ​​wektory te są współliniowe, oraz .

Wniosek: Przeciwległe boki czworokąta są równoległe parami, co oznacza, że ​​z definicji jest to równoległobok. CO BYŁO DO OKAZANIA.

Więcej dobrych i różnych liczb:

Przykład 4

Dane są wierzchołki czworokąta. Udowodnić, że czworokąt jest trapezem.

Dla bardziej rygorystycznego sformułowania dowodu lepiej oczywiście uzyskać definicję trapezu, ale wystarczy po prostu przypomnieć sobie, jak on wygląda.

To zadanie, które możesz rozwiązać samodzielnie. Kompletne rozwiązanie na koniec lekcji.

A teraz czas powoli przenieść się z samolotu w kosmos:

Jak określić kolinearność wektorów przestrzennych?

Zasada jest bardzo podobna. Aby dwa wektory przestrzenne były współliniowe, konieczne i wystarczające, tak że odpowiadające im współrzędne są proporcjonalne.

Przykład 5

Sprawdź, czy następujące wektory przestrzenne są współliniowe:

A) ;
B)
V)

Rozwiązanie:
a) Sprawdźmy, czy istnieje współczynnik proporcjonalności dla odpowiednich współrzędnych wektorów:

Układ nie ma rozwiązania, co oznacza, że ​​wektory nie są współliniowe.

„Uproszczenie” jest sformalizowane poprzez sprawdzenie proporcji. W tym przypadku:
– odpowiadające im współrzędne nie są proporcjonalne, co oznacza, że ​​wektory nie są współliniowe.

Odpowiedź: wektory nie są współliniowe.

b-c) Są to punkty do samodzielnej decyzji. Wypróbuj na dwa sposoby.

Istnieje metoda sprawdzania kolinearności wektorów przestrzennych poprzez wyznacznik trzeciego rzędu, Ta metoda omówione w artykule Iloczyn wektorowy wektorów .

Podobnie jak w przypadku płaszczyzny, rozważane narzędzia można wykorzystać do badania równoległości odcinków przestrzennych i prostych.

Witamy w drugiej części:

Liniowa zależność i niezależność wektorów w przestrzeni trójwymiarowej.
Baza przestrzenna i afiniczny układ współrzędnych

Wiele wzorów, które sprawdziliśmy w samolocie, będzie dotyczyć przestrzeni kosmicznej. Próbowałem zminimalizować notatki z teorii, ponieważ lwia część informacja została już przeżuta. Zalecam jednak uważne przeczytanie części wprowadzającej, gdyż pojawią się nowe terminy i koncepcje.

Teraz zamiast płaszczyzny biurka komputerowego eksplorujemy trójwymiarową przestrzeń. Najpierw stwórzmy jego podstawę. Ktoś jest teraz w pomieszczeniu, ktoś na zewnątrz, ale w każdym razie nie możemy uciec od trzech wymiarów: szerokości, długości i wysokości. Dlatego do skonstruowania podstawy potrzebne będą trzy wektory przestrzenne. Jeden lub dwa wektory nie wystarczą, czwarty jest zbędny.

I znowu rozgrzewamy się na palcach. Proszę podnieść rękę do góry i rozłożyć ją w różnych kierunkach kciuk, indeks i środkowy palec . Będą to wektory, patrzą w różnych kierunkach, mają różne długości i mają między sobą różne kąty. Gratulacje, podstawa trójwymiarowej przestrzeni jest gotowa! Swoją drogą, nie ma potrzeby demonstrowania tego nauczycielom, bez względu na to, jak mocno kręcisz palcami, ale od definicji nie ma ucieczki =)

Dalej, zapytajmy ważna kwestia, czy dowolne trzy wektory tworzą bazę przestrzeń trójwymiarowa ? Naciśnij mocno trzema palcami na blat biurka komputera. Co się stało? Trzy wektory znajdują się w tej samej płaszczyźnie i, z grubsza rzecz biorąc, straciliśmy jeden z wymiarów - wysokość. Takie wektory są współpłaszczyznowy i jest całkiem oczywiste, że podstawa przestrzeni trójwymiarowej nie jest tworzona.

Należy zauważyć, że wektory współpłaszczyznowe nie muszą leżeć w tej samej płaszczyźnie, mogą leżeć w płaszczyznach równoległych (tylko nie rób tego palcami, zrobił to tylko Salvador Dali =)).

Definicja: wektory są nazywane współpłaszczyznowy, jeśli istnieje płaszczyzna, do której są one równoległe. Logiczne jest tutaj dodanie, że jeśli taka płaszczyzna nie istnieje, to wektory nie będą współpłaszczyznowe.

Trzy wektory współpłaszczyznowe są zawsze liniowo zależne, to znaczy, że są wyrażane liniowo przez siebie. Dla uproszczenia wyobraźmy sobie jeszcze raz, że leżą one w tej samej płaszczyźnie. Po pierwsze, wektory są nie tylko współpłaszczyznowe, mogą być również współliniowe, wtedy dowolny wektor można wyrazić poprzez dowolny wektor. W drugim przypadku, jeśli np. wektory nie są współliniowe, to trzeci wektor wyraża się przez nie w unikalny sposób: (i dlaczego łatwo zgadnąć z materiałów w poprzedniej sekcji).

Odwrotna sytuacja jest również prawdą: trzy niewspółpłaszczyznowe wektory są zawsze liniowo niezależne to znaczy nie wyrażają się one poprzez siebie nawzajem. I oczywiście tylko takie wektory mogą stanowić podstawę przestrzeni trójwymiarowej.

Definicja: Podstawa przestrzeni trójwymiarowej nazywa się potrójną liniowo niezależnymi (niewspółpłaszczyznowymi) wektorami, podjęte w określonej kolejności i dowolny wektor przestrzeni jedyny sposób jest rozkładany na zadaną bazę, gdzie są współrzędne wektora w tej bazie

Przypomnę, że możemy również powiedzieć, że wektor jest przedstawiony w postaci kombinacja liniowa wektory bazowe.

Pojęcie układu współrzędnych wprowadza się dokładnie tak samo, jak w przypadku płaszczyzny, wystarczy jeden punkt i dowolne trzy liniowo niezależne wektory:

pochodzenie, I niewspółpłaszczyznowe wektory, podjęte w określonej kolejności, ustawić afiniczny układ współrzędnych przestrzeni trójwymiarowej :

Oczywiście siatka współrzędnych jest „ukośna” i niewygodna, ale mimo to skonstruowany układ współrzędnych pozwala nam zdecydowanie określić współrzędne dowolnego wektora i współrzędne dowolnego punktu w przestrzeni. Podobnie jak w przypadku płaszczyzny, niektóre formuły, o których już wspomniałem, nie będą działać w afinicznym układzie współrzędnych przestrzeni.

Najbardziej znanym i wygodnym przypadkiem specjalnym afinicznego układu współrzędnych, jak wszyscy się domyślają, jest prostokątny układ współrzędnych przestrzeni:

Punkt w przestrzeni zwany pochodzenie, I ortonormalny podstawa jest ustalona Kartezjański prostokątny układ współrzędnych przestrzeni . Znajomy obrazek:

Zanim przejdziemy do zadań praktycznych, ponownie usystematyzujmy informacje:

Dla trzech wektorów przestrzennych poniższe stwierdzenia są równoważne:
1) wektory są liniowo niezależne;
2) wektory stanowią bazę;
3) wektory nie są współpłaszczyznowe;
4) wektory nie mogą być wyrażane liniowo przez siebie;
5) wyznacznik złożony ze współrzędnych tych wektorów jest różny od zera.

Myślę, że przeciwne stwierdzenia są zrozumiałe.

Liniową zależność/niezależność wektorów przestrzennych tradycyjnie sprawdza się za pomocą wyznacznika (punkt 5). Pozostały zadania praktyczne będzie miał wyraźny charakter algebraiczny. Czas odłożyć kij do geometrii i chwycić kij baseballowy algebry liniowej:

Trzy wektory przestrzeni są współpłaszczyznowe wtedy i tylko wtedy, gdy wyznacznik złożony ze współrzędnych danych wektorów jest równy zeru: .

Zwracam uwagę na mały szczegół niuans techniczny: współrzędne wektorów można zapisywać nie tylko w kolumnach, ale także w wierszach (wartość wyznacznika nie zmieni się od tego - patrz. właściwości wyznaczników). Ale jest znacznie lepszy w kolumnach, ponieważ jest bardziej korzystny w rozwiązywaniu niektórych praktycznych problemów.

Tym czytelnikom, którzy trochę zapomnieli o metodach obliczania wyznaczników, a może w ogóle ich nie rozumieją, polecam jedną z moich najstarszych lekcji: Jak obliczyć wyznacznik?

Przykład 6

Sprawdź, czy następujące wektory stanowią podstawę przestrzeni trójwymiarowej:

Rozwiązanie: Tak naprawdę całe rozwiązanie sprowadza się do obliczenia wyznacznika.

a) Obliczmy wyznacznik złożony ze współrzędnych wektorowych (wyznacznik ujawnia się w pierwszym wierszu):

, co oznacza, że ​​wektory są liniowo niezależne (nie współpłaszczyznowe) i stanowią podstawę przestrzeni trójwymiarowej.

Odpowiedź: te wektory tworzą bazę

b) Jest to punkt do samodzielnej decyzji. Pełne rozwiązanie i odpowiedź na końcu lekcji.

Istnieją również zadania twórcze:

Przykład 7

Przy jakiej wartości parametru wektory będą współpłaszczyznowe?

Rozwiązanie: Wektory są współpłaszczyznowe wtedy i tylko wtedy, gdy wyznacznik złożony ze współrzędnych tych wektorów jest równy zeru:

Zasadniczo musisz rozwiązać równanie z wyznacznikiem. Spadamy na zera niczym latawce na skoczkach - najlepiej otworzyć wyznacznik w drugiej linii i od razu pozbyć się minusów:

Dokonujemy dalszych uproszczeń i sprowadzamy sprawę do najprostszego równania liniowego:

Odpowiedź: Na

Tutaj łatwo to sprawdzić, w tym celu należy podstawić wynikową wartość do pierwotnego wyznacznika i upewnić się, że , otwierając je ponownie.

Podsumowując, spójrzmy na jeszcze jedno typowe zadanie, która ma charakter bardziej algebraiczny i jest tradycyjnie uwzględniana w kursie algebry liniowej. Jest to tak powszechne, że zasługuje na własny temat:

Udowodnić, że 3 wektory stanowią podstawę przestrzeni trójwymiarowej
i znajdź na tej podstawie współrzędne czwartego wektora

Przykład 8

Podano wektory. Pokaż, że wektory tworzą bazę w przestrzeni trójwymiarowej i znajdź na tej podstawie współrzędne wektora.

Rozwiązanie: Najpierw zajmijmy się warunkiem. Warunkowo podano cztery wektory i, jak widać, mają one już w jakiejś bazie współrzędne. Nie interesuje nas, jaka jest ta podstawa. Interesująca jest następująca rzecz: mogą powstać trzy wektory nowa podstawa. A pierwszy etap całkowicie pokrywa się z rozwiązaniem z Przykładu 6, należy sprawdzić, czy wektory są rzeczywiście liniowo niezależne:

Obliczmy wyznacznik złożony ze współrzędnych wektorowych:

, co oznacza, że ​​wektory są liniowo niezależne i stanowią podstawę przestrzeni trójwymiarowej.

! Ważny : współrzędne wektora Koniecznie zanotować w kolumny wyznacznik, a nie w łańcuchach. W przeciwnym razie w dalszym algorytmie rozwiązania wystąpi zamieszanie.

Definicja. Liniowa kombinacja wektorów a 1 , ..., an o współczynnikach x 1 , ..., x n nazywa się wektorem

x 1 za 1 + ... + x n za n .

trywialny, jeśli wszystkie współczynniki x 1 , ..., x n są równe zero.

Definicja. Nazywa się kombinację liniową x 1 a 1 + ... + x n a n nietrywialne, jeśli przynajmniej jeden ze współczynników x 1, ..., x n nie jest równy zero.

liniowo niezależny, jeśli nie ma nietrywialnej kombinacji tych wektorów równej wektorowi zerowemu.

Oznacza to, że wektory a 1, ..., a n są liniowo niezależne, jeśli x 1 a 1 + ... + x n a n = 0 wtedy i tylko wtedy, gdy x 1 = 0, ..., x n = 0.

Definicja. Nazywa się wektory a 1, ..., an liniowo zależne, jeśli istnieje nietrywialna kombinacja tych wektorów równa wektorowi zerowemu.

Własności wektorów liniowo zależnych:

    Dla wektorów 2 i 3 wymiarowych.

    Dwa liniowo zależne wektory są współliniowe. (Wektory współliniowe są liniowo zależne.)

    Dla wektorów trójwymiarowych.

    Trzy liniowo zależne wektory są współpłaszczyznowe. (Trzy wektory współpłaszczyznowe są liniowo zależne.)

  • Dla wektorów n-wymiarowych.

    wektory n + 1 są zawsze liniowo zależne.

Przykładowe problemy liniowej zależności i liniowej niezależności wektorów:

Przykład 1. Sprawdź, czy wektory a = (3; 4; 5), b = (-3; 0; 5), c = (4; 4; 4), d = (3; 4; 0) są liniowo niezależne .

Rozwiązanie:

Wektory będą liniowo zależne, ponieważ wymiar wektorów jest mniejszy niż liczba wektorów.

Przykład 2. Sprawdź, czy wektory a = (1; 1; 1), b = (1; 2; 0), c = (0; -1; 1) są liniowo niezależne.

Rozwiązanie:

x 1 + x 2 = 0
x 1 + 2 x 2 - x 3 = 0
x 1 + x 3 = 0
1 1 0 0 ~
1 2 -1 0
1 0 1 0
~ 1 1 0 0 ~ 1 1 0 0 ~
1 - 1 2 - 1 -1 - 0 0 - 0 0 1 -1 0
1 - 1 0 - 1 1 - 0 0 - 0 0 -1 1 0

odejmij drugą od pierwszej linii; dodaj drugą linię do trzeciej linii:

~ 1 - 0 1 - 1 0 - (-1) 0 - 0 ~ 1 0 1 0
0 1 -1 0 0 1 -1 0
0 + 0 -1 + 1 1 + (-1) 0 + 0 0 0 0 0

Rozwiązanie to pokazuje, że układ ma wiele rozwiązań, czyli istnieje niezerowa kombinacja wartości liczb x 1, x 2, x 3 taka, że ​​kombinacja liniowa wektorów a, b, c jest równa wektor zerowy, na przykład:

A + b + do = 0

co oznacza, że ​​wektory a, b, c są liniowo zależne.

Odpowiedź: wektory a, b, c są liniowo zależne.

Przykład 3. Sprawdź, czy wektory a = (1; 1; 1), b = (1; 2; 0), c = (0; -1; 2) są liniowo niezależne.

Rozwiązanie: Znajdźmy wartości współczynników, przy których kombinacja liniowa tych wektorów będzie równa wektorowi zerowemu.

x 1 za + x 2 b + x 3 do 1 = 0

To równanie wektorowe można zapisać jako układ równań liniowych

x 1 + x 2 = 0
x 1 + 2 x 2 - x 3 = 0
x 1 + 2 x 3 = 0

Rozwiążmy ten układ metodą Gaussa

1 1 0 0 ~
1 2 -1 0
1 0 2 0

odejmij pierwszą od drugiej linii; odejmij pierwszą od trzeciej linii:

~ 1 1 0 0 ~ 1 1 0 0 ~
1 - 1 2 - 1 -1 - 0 0 - 0 0 1 -1 0
1 - 1 0 - 1 2 - 0 0 - 0 0 -1 2 0

odejmij drugą od pierwszej linii; dodaj drugą do trzeciej linii.

Pozwalać L jest dowolną przestrzenią liniową, a I Î L,- jego elementy (wektory).

Definicja 3.3.1. Wyrażenie , Gdzie , - dowolne liczby rzeczywiste, zwane kombinacją liniową wektory a 1 , a 2 ,…, a N.

Jeśli wektor R = , wtedy tak mówią R rozłożone na wektory a 1 , a 2 ,…, a N.

Definicja 3.3.2. Nazywa się liniową kombinacją wektorów nietrywialne, jeśli wśród liczb jest przynajmniej jedna liczba różna od zera. W przeciwnym razie wywoływana jest kombinacja liniowa trywialny.

Definicja 3.3.3 . Wektory a 1 , a 2 ,…, a N nazywane są liniowo zależnymi, jeśli istnieje ich nietrywialna kombinacja liniowa taka, że

= 0 .

Definicja 3.3.4. Wektory a 1 , a 2 ,…, a N nazywane są liniowo niezależnymi, jeśli równość = 0 jest możliwe tylko w przypadku, gdy wszystkie liczby l 1, l 2,…, l n są jednocześnie równe zeru.

Należy zauważyć, że każdy niezerowy element a 1 można uznać za układ liniowo niezależny, ponieważ zachodzi równość l 1 = 0 możliwe tylko wtedy, gdy l= 0.

Twierdzenie 3.3.1. Konieczne i warunek wystarczający zależność liniowa a 1, a 2,…, a N jest możliwością rozłożenia przynajmniej jednego z tych elementów na resztę.

Dowód. Konieczność. Niech elementy a 1 , a 2 ,…, a N liniowo zależne. To znaczy, że = 0 i co najmniej jedną z liczb l 1, l 2,…, l n różny od zera. Niech będzie pewność l 1 ¹ 0. Następnie

tj. element a 1 jest rozkładany na elementy a 2 , a 3 , …, a N.

Adekwatność. Niech element a 1 zostanie rozłożony na elementy a 2 , a 3 , …, a N, tj. 1 = . Następnie = 0 , zatem istnieje nietrywialna kombinacja liniowa wektorów a 1 , a 2 ,…, a N, równy 0 , więc są liniowo zależne .

Twierdzenie 3.3.2. Jeżeli przynajmniej jeden z elementów a 1 , a 2 ,…, a N zero, to wektory te są liniowo zależne.

Dowód . Pozwalać A N= 0 , wtedy = 0 , co oznacza liniową zależność tych elementów.

Twierdzenie 3.3.3. Jeśli spośród n wektorów dowolne p (str< n) векторов линейно зависимы, то и все n элементов линейно зависимы.

Dowód. Niech dla określoności elementy a 1 , a 2 ,…, a P liniowo zależne. Oznacza to, że istnieje nietrywialna kombinacja liniowa taka, że = 0 . Podana równość zostanie zachowana, jeśli dodamy element do obu jego części. Następnie + = 0 i co najmniej jedną z liczb l 1, l 2,…, lp różny od zera. Zatem wektory a 1 , a 2 ,…, a N są liniowo zależne.

Wniosek 3.3.1. Jeżeli n elementów jest liniowo niezależnych, to dowolne k z nich jest liniowo niezależne (k< n).

Twierdzenie 3.3.4. Jeśli wektory a 1 , a 2 ,…, a N- 1 są liniowo niezależne, oraz elementy a 1 , a 2 ,…, a N- 1, za n są liniowo zależne, to wektor A n można rozwinąć na wektory a 1 , a 2 ,…, a N- 1 .



Dowód. Ponieważ według warunku a 1 , a 2 ,…,A N- 1, za N są liniowo zależne, to istnieje ich nietrywialna kombinacja liniowa = 0 , i (w przeciwnym razie okażą się liniowe wektory zależne a 1 , a 2 ,…, a N- 1). Ale potem wektor

,

co było do okazania



Nowość na stronie

>

Najbardziej popularny