بيت صحة منتج اللوغاريتمات العشرية. الوحدة اللوغاريتمية والصفر اللوغاريتمي

منتج اللوغاريتمات العشرية. الوحدة اللوغاريتمية والصفر اللوغاريتمي

المتعلق ب

يمكن تعيين مهمة العثور على أي من الأرقام الثلاثة من الرقمين الآخرين. إذا تم إعطاء a ثم N، يتم العثور عليهما عن طريق الأس. إذا تم إعطاء N ثم a بأخذ جذر الدرجة x (أو رفعها إلى الأس). الآن فكر في الحالة التي نحتاج فيها إلى إيجاد x، عند وجود a وN.

وليكن الرقم N موجباً: الرقم a يكون موجباً ولا يساوي واحداً: .

تعريف. لوغاريتم الرقم N للأساس a هو الأس الذي يجب رفع a إليه للحصول على الرقم N؛ يتم الإشارة إلى اللوغاريتم بواسطة

وهكذا، في المساواة (26.1) تم العثور على الأس على أنه لوغاريتم N للأساس a. دعامات

لها نفس المعنى. تُسمى المساواة (26.1) أحيانًا بالهوية الرئيسية لنظرية اللوغاريتمات؛ وهو في الواقع يعبر عن تعريف مفهوم اللوغاريتم. بواسطة هذا التعريفقاعدة اللوغاريتم a تكون دائمًا موجبة ومختلفة عن الوحدة؛ الرقم اللوغاريتمي N موجب. الأرقام السالبة والصفر ليس لها لوغاريتمات. يمكن إثبات أن أي رقم له أساس معين له لوغاريتم محدد جيدًا. ولذلك تستلزم المساواة . لاحظ أن الشرط ضروري هنا، وإلا فلن يكون الاستنتاج مبررا، لأن المساواة صحيحة لأي قيم x و y.

مثال 1. البحث

حل. للحصول على رقم يجب عليك رفع الأساس 2 إلى القوة لذلك.

يمكنك تدوين ملاحظات عند حل مثل هذه الأمثلة بالشكل التالي:

مثال 2. ابحث عن .

حل. لدينا

في المثالين 1 و 2، وجدنا بسهولة اللوغاريتم المطلوب من خلال تمثيل رقم اللوغاريتم كقوة للأساس مع أس منطقي. في الحالة العامة، على سبيل المثال، وما إلى ذلك، لا يمكن القيام بذلك، لأن اللوغاريتم له قيمة غير منطقية. دعونا ننتبه إلى مسألة واحدة تتعلق بهذا البيان. في الفقرة 12، قدمنا ​​مفهوم إمكانية تحديد أي قوة حقيقية لعدد موجب معين. كان هذا ضروريًا لإدخال اللوغاريتمات، والتي، بشكل عام، يمكن أن تكون أرقامًا غير منطقية.

دعونا نلقي نظرة على بعض خصائص اللوغاريتمات.

الخاصية 1. إذا كان الرقم والقاعدة متساويين، فإن اللوغاريتم يساوي واحدًا، وعلى العكس، إذا كان اللوغاريتم يساوي واحدًا، فإن الرقم والقاعدة متساويان.

دليل. دعونا من خلال تعريف اللوغاريتم لدينا ومن أين

وعلى العكس من ذلك، اسمحوا ثم حسب التعريف

الخاصية 2. لوغاريتم واحد لأي أساس يساوي صفر.

دليل. حسب تعريف اللوغاريتم (القوة الصفرية لأي قاعدة موجبة تساوي واحدًا، انظر (١٠.١)). من هنا

Q.E.D.

العبارة العكسية صحيحة أيضًا: إذا، فإن N = 1. في الواقع، لدينا.

قبل صياغة الخاصية التالية للوغاريتمات، دعونا نتفق على القول بأن الرقمين a وb يقعان على نفس الجانب من الرقم الثالث c إذا كانا أكبر من c أو أقل من c. إذا كان أحد هذين الرقمين أكبر من c، والآخر أقل من c، فسنقول إنهما يقعان على طرفي نقيض من c.

الخاصية 3. إذا كان الرقم والقاعدة يقعان على نفس الجانب من الواحد، فإن اللوغاريتم موجب؛ إذا كان العدد والقاعدة يقعان على طرفين متقابلين للواحد، فإن اللوغاريتم يكون سالبًا.

يعتمد إثبات الخاصية 3 على أن قوة a أكبر من واحد إذا كان الأساس أكبر من واحد والأس موجب أو الأساس أقل من واحد والأس سالب. تكون القوة أقل من واحد إذا كان الأساس أكبر من واحد والأس سالبًا أو إذا كان الأساس أقل من واحد والأس موجب.

هناك أربع حالات يجب أخذها بعين الاعتبار:

وسوف نقتصر على تحليل الأول منها، وسينظر القارئ في الباقي من تلقاء نفسه.

فليكن الأس في حالة المساواة لا يمكن أن يكون سالبًا ولا يساوي صفرًا، فهو موجب، أي كما يجب إثباته.

مثال 3. اكتشف أي اللوغاريتمات أدناه إيجابية وأيها سلبية:

الحل: أ) بما أن العدد 15 والأساس 12 يقعان على نفس الجانب من الواحد؛

ب) بما أن 1000 و2 يقعان على جانب واحد من الوحدة؛ وفي هذه الحالة ليس من المهم أن يكون الأساس أكبر من الرقم اللوغاريتمي؛

ج) بما أن 3.1 و 0.8 يقعان على طرفي نقيض من الوحدة؛

ز) ؛ لماذا؟

د) ؛ لماذا؟

غالبًا ما تسمى الخصائص التالية 4-6 بقواعد اللوغاريتمات: فهي تسمح، بمعرفة لوغاريتمات بعض الأرقام، بالعثور على لوغاريتمات منتجها وحاصلها ودرجة كل منها.

الخاصية 4 (قاعدة لوغاريتم المنتج). لوغاريتم منتج عدة أرقام موجبة بواسطة هذا الأساس يساوي المبلغلوغاريتمات هذه الأرقام لنفس الأساس.

دليل. دع الأرقام المعطاة تكون موجبة.

بالنسبة لوغاريتم حاصل ضربهم نكتب المساواة (26.1) التي تحدد اللوغاريتم:

من هنا سنجد

وبمقارنة أسس التعبير الأول والأخير نحصل على المساواة المطلوبة:

علماً بأن الشرط أساسي؛ لوغاريتم منتج اثنين أرقام سلبيةفمن المنطقي، ولكن في هذه الحالة نحصل

بشكل عام، إذا كان حاصل ضرب عدة عوامل موجبًا، فإن لوغاريتمه يساوي مجموع لوغاريتمات القيم المطلقة لهذه العوامل.

الخاصية 5 (قاعدة أخذ لوغاريتمات القسمة). لوغاريتم حاصل قسمة الأعداد الموجبة يساوي الفرق بين لوغاريتمات المقسوم والمقسوم عليه، مأخوذة من نفس الأساس. دليل. نجد باستمرار

Q.E.D.

الخاصية 6 (قاعدة لوغاريتم القوة). لوغاريتم أس أي رقم موجب يساوي لوغاريتم ذلك الرقم مضروبًا في الأس.

دليل. دعونا نكتب مرة أخرى الهوية الرئيسية (26.1) للرقم:

Q.E.D.

عاقبة. لوغاريتم جذر عدد موجب يساوي لوغاريتم الجذر مقسومًا على أس الجذر:

يمكن إثبات صحة هذه النتيجة الطبيعية من خلال تخيل كيفية استخدام الخاصية 6.

مثال 4. خذ اللوغاريتم للأساس a:

أ) (من المفترض أن جميع القيم ب، ج، د، ه إيجابية)؛

ب) (يفترض ذلك).

الحل، أ) من المناسب الانتقال إلى القوى الكسرية في هذا التعبير:

بناءً على التساويات (26.5)-(26.7)، يمكننا الآن أن نكتب:

نلاحظ أنه يتم إجراء عمليات أبسط على لوغاريتمات الأرقام مقارنة بالأرقام نفسها: عند ضرب الأرقام، تُضاف اللوغاريتمات الخاصة بها، وعند القسمة تُطرح، وما إلى ذلك.

ولهذا السبب يتم استخدام اللوغاريتمات في ممارسة الحوسبة (انظر الفقرة 29).

يُطلق على الإجراء العكسي للوغاريتم اسم التقوية، أي: التقوية هي الإجراء الذي يتم من خلاله العثور على الرقم نفسه من لوغاريتم معين لرقم. في الأساس، التقوية ليست كذلك عمل خاص: يتعلق الأمر برفع القاعدة إلى قوة (تساوي لوغاريتم الرقم). يمكن اعتبار مصطلح "التقوية" مرادفًا لمصطلح "التعزيز".

عند التحفيز، يجب عليك استخدام القواعد العكسية لقواعد اللوغاريتمات: استبدل مجموع اللوغاريتمات بلوغاريتم المنتج، وفرق اللوغاريتمات بلوغاريتم الحاصل، وما إلى ذلك. على وجه الخصوص، إذا كان هناك عامل في المقدمة من علامة اللوغاريتم، ثم أثناء التقوية يجب أن يتم نقلها إلى درجات الأس تحت علامة اللوغاريتم.

مثال 5. ابحث عن N إذا كان معروفا ذلك

حل. فيما يتعلق بقاعدة التقوية المذكورة للتو، سننقل العوامل 2/3 و1/3 الموجودة أمام علامات اللوغاريتمات على الجانب الأيمن من هذه المساواة إلى أسس تحت علامات هذه اللوغاريتمات؛ نحن نحصل

الآن نستبدل فرق اللوغاريتمات بلوغاريتم الحاصل:

للحصول على الكسر الأخير في سلسلة التساويات هذه، قمنا بتحرير الكسر السابق من اللاعقلانية في المقام (البند 25).

الخاصية 7. إذا كانت القاعدة أكبر من واحد عدد أكبرله لوغاريتم أكبر (والرقم الأصغر له لوغاريتم أصغر)، إذا كان الأساس أقل من واحد، فإن الرقم الأكبر له لوغاريتم أصغر (والرقم الأصغر له لوغاريتم أكبر).

تمت صياغة هذه الخاصية أيضًا كقاعدة لأخذ لوغاريتمات المتباينات التي يكون طرفاها موجبًا:

عند لوغاريتم المتباينات لأساس أكبر من واحد، يتم الحفاظ على علامة عدم المساواة، وعند اللوغاريتم لأساس أقل من واحد، تتغير علامة عدم المساواة إلى العكس (انظر أيضًا الفقرة 80).

يعتمد الدليل على الخاصيتين 5 و 3. ضع في اعتبارك الحالة عندما نحصل على إذا، وبأخذ اللوغاريتمات

(a وN/M يقعان على نفس الجانب من الوحدة). من هنا

الحالة التالية، سيكتشفها القارئ بنفسه.

كما تعلم، عند ضرب التعبيرات بالقوى، فإن أسسها دائمًا ما تكون مجمعة (a b *a c = a b+c). اشتق هذا القانون الرياضي من قبل أرخميدس، وفي وقت لاحق، في القرن الثامن، قام عالم الرياضيات فيراسين بإنشاء جدول من الأسس الصحيحة. لقد كانوا هم الذين خدموا في اكتشاف المزيد من اللوغاريتمات. يمكن العثور على أمثلة لاستخدام هذه الوظيفة في كل مكان تقريبًا حيث تحتاج إلى تبسيط الضرب المرهق عن طريق الجمع البسيط. إذا أمضيت 10 دقائق في قراءة هذا المقال، فسنشرح لك ما هي اللوغاريتمات وكيفية التعامل معها. بلغة بسيطة وسهلة المنال.

التعريف في الرياضيات

اللوغاريتم هو تعبير بالشكل التالي: log a b=c، أي لوغاريتم أي رقم غير سالب (أي أي موجب) "b" إلى قاعدته "a" يعتبر أس "c" " والتي يجب رفع الأساس "أ" إليها للحصول على القيمة "ب" في النهاية. دعونا نحلل اللوغاريتم باستخدام الأمثلة، لنفترض أن هناك سجل تعبير 2 8. كيف تجد الإجابة؟ الأمر بسيط للغاية، تحتاج إلى العثور على قوة بحيث تحصل على 8 من 2 إلى القوة المطلوبة. وبعد إجراء بعض الحسابات في رأسك، نحصل على الرقم 3! وهذا صحيح، لأن 2 أس 3 يعطي الإجابة 8.

أنواع اللوغاريتمات

بالنسبة للعديد من التلاميذ والطلاب، يبدو هذا الموضوع معقدا وغير مفهوم، ولكن في الواقع اللوغاريتمات ليست مخيفة للغاية، والشيء الرئيسي هو فهم معناها العام وتذكر خصائصها وبعض القواعد. هناك ثلاثة الأنواع الفرديةالتعبيرات اللوغاريتمية:

  1. اللوغاريتم الطبيعي ln a، حيث الأساس هو رقم أويلر (e = 2.7).
  2. العشري أ، حيث الأساس هو 10.
  3. لوغاريتم أي رقم ب للأساس أ> 1.

يتم حل كل منها بطريقة قياسية، بما في ذلك التبسيط والاختزال والاختزال اللاحق إلى لوغاريتم واحد باستخدام النظريات اللوغاريتمية. للحصول على القيم الصحيحة للوغاريتمات، يجب أن تتذكر خصائصها وتسلسل الإجراءات عند حلها.

القواعد وبعض القيود

في الرياضيات، هناك العديد من القيود والقواعد التي يتم قبولها كبديهية، أي أنها لا تخضع للمناقشة وهي الحقيقة. على سبيل المثال، لا يمكن قسمة الأرقام على صفر، ومن المستحيل أيضًا استخراج الجذر حتى درجةمن الارقام السالبة تحتوي اللوغاريتمات أيضًا على قواعدها الخاصة، والتي يمكنك من خلالها تعلم كيفية العمل بسهولة حتى مع التعبيرات اللوغاريتمية الطويلة والواسعة:

  • يجب أن يكون الأساس "أ" دائمًا أكبر من الصفر، ولا يساوي 1، وإلا فسيفقد التعبير معناه، لأن "1" و"0" بأي درجة متساويان دائمًا لقيمتهما؛
  • إذا كانت a > 0، ثم b >0، يتبين أن "c" يجب أن تكون أيضًا أكبر من الصفر.

كيفية حل اللوغاريتمات؟

على سبيل المثال، تم تكليفك بمهمة العثور على إجابة المعادلة 10 × = 100. هذا سهل للغاية، تحتاج إلى اختيار قوة عن طريق رفع الرقم عشرة الذي نحصل عليه 100. وهذا بالطبع هو 10 2 = 100.

الآن دعونا نمثل هذا التعبير في صورة لوغاريتمية. نحصل على سجل 10 100 = 2. عند حل اللوغاريتمات، تتلاقى جميع الإجراءات عمليا للعثور على القوة التي من الضروري إدخال قاعدة اللوغاريتم من أجل الحصول على رقم معين.

لتحديد قيمة درجة غير معروفة بدقة، عليك أن تتعلم كيفية العمل مع جدول الدرجات. تبدو هكذا:

كما ترون، يمكن تخمين بعض الأسس بشكل حدسي إذا كان لديك عقل تقني ومعرفة بجدول الضرب. ومع ذلك، لقيم أكبر سوف تحتاج إلى جدول الطاقة. يمكن استخدامه حتى من قبل أولئك الذين لا يعرفون شيئًا على الإطلاق عن الموضوعات الرياضية المعقدة. يحتوي العمود الأيسر على أرقام (الأساس أ)، والصف العلوي من الأرقام هو قيمة القوة ج التي يرتفع إليها الرقم أ. عند التقاطع تحتوي الخلايا على القيم الرقمية التي هي الجواب (أ ج = ب). لنأخذ، على سبيل المثال، الخلية الأولى ذات الرقم 10 ونقوم بتربيعها، ونحصل على القيمة 100، والتي تتم الإشارة إليها عند تقاطع الخليتين لدينا. كل شيء بسيط وسهل لدرجة أن حتى أكثر الإنسانيين صدقًا سوف يفهمونه!

المعادلات والمتباينات

اتضح أنه في ظل ظروف معينة يكون الأس هو اللوغاريتم. لذلك، يمكن كتابة أي تعبيرات عددية رياضية على هيئة مساواة لوغاريتمية. على سبيل المثال، 3 4 = 81 يمكن كتابتها على أنها اللوغاريتم ذو الأساس 3 للرقم 81 يساوي أربعة (log 3 81 = 4). القواعد هي نفسها بالنسبة للقوى السالبة: 2 -5 = 1/32 نكتبها على شكل لوغاريتم، ونحصل على log 2 (1/32) = -5. أحد أروع أقسام الرياضيات هو موضوع "اللوغاريتمات". سننظر في أمثلة وحلول المعادلات أدناه مباشرة بعد دراسة خصائصها. الآن دعونا نلقي نظرة على الشكل الذي تبدو عليه المتباينات وكيفية تمييزها عن المعادلات.

يتم إعطاء التعبير التالي: log 2 (x-1) > 3 - وهي متباينة لوغاريتمية، لأن القيمة غير المعروفة "x" تقع تحت العلامة اللوغاريتمية. وأيضًا في التعبير تتم مقارنة كميتين: لوغاريتم الرقم المطلوب للأساس اثنين أكبر من الرقم ثلاثة.

الفرق الأكثر أهمية بين المعادلات اللوغاريتمية والمتباينات هو أن المعادلات ذات اللوغاريتمات (على سبيل المثال، اللوغاريتم 2 x = √9) تتضمن إجابة واحدة أو أكثر محددة. القيم العدديةبينما عند حل المتراجحة يتم تحديد نطاق القيم المسموح بها ونقاط التوقف لهذه الدالة. ونتيجة لذلك، فإن الإجابة ليست مجموعة بسيطة من الأرقام الفردية، كما هو الحال في الإجابة على المعادلة، بل بالأحرى سلسلة مستمرةأو مجموعة من الأرقام

النظريات الأساسية حول اللوغاريتمات

عند حل المهام البدائية لإيجاد قيم اللوغاريتم، قد لا تكون خصائصه معروفة. ومع ذلك، عندما يتعلق الأمر بالمعادلات اللوغاريتمية أو عدم المساواة، أولا وقبل كل شيء، من الضروري أن نفهم بوضوح ونطبق في الممارسة العملية جميع الخصائص الأساسية للوغاريتمات. سننظر في أمثلة المعادلات لاحقًا، فلننظر أولاً إلى كل خاصية بمزيد من التفصيل.

  1. الهوية الرئيسية تبدو كالتالي: a logaB =B. وينطبق هذا فقط عندما تكون a أكبر من 0، ولا تساوي واحدًا، وتكون B أكبر من الصفر.
  2. يمكن تمثيل لوغاريتم المنتج بالصيغة التالية: log d (s 1 * s 2) = log d s 1 + log d s 2. في هذه الحالة المتطلبات المسبقةهو: د، ق 1 و ق 2 > 0؛ أ≠1. يمكنك تقديم دليل على هذه الصيغة اللوغاريتمية، مع الأمثلة والحل. دعونا سجل a s 1 = f 1 ونسجل a s 2 = f 2، ثم a f1 = s 1، a f2 = s 2. نحصل على أن s 1 * s 2 = a f1 *a f2 = a f1+f2 (خصائص درجات )، ومن ثم حسب التعريف: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2، وهو ما يحتاج إلى إثبات.
  3. يبدو لوغاريتم الحاصل كما يلي: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. تأخذ النظرية في شكل صيغة الشكل التالي: log a q b n = n/q log a b.

تسمى هذه الصيغة "خاصية درجة اللوغاريتم". إنها تشبه خصائص الدرجات العادية، وهذا ليس مفاجئا، لأن كل الرياضيات مبنية على مسلمات طبيعية. دعونا ننظر إلى الدليل.

دعونا سجل أ ب = ر، اتضح أن ر = ب. إذا رفعنا كلا الجزأين للأس m: a tn = b n ;

ولكن بما أن a tn = (a q) nt/q = b n، لذلك سجل a q b n = (n*t)/t، ثم سجل a q b n = n/q سجل a b. لقد تم إثبات النظرية.

أمثلة على المشاكل وعدم المساواة

أكثر أنواع المسائل شيوعًا في اللوغاريتمات هي أمثلة المعادلات والمتباينات. وهي موجودة في جميع كتب المسائل تقريبًا، وهي أيضًا جزء مطلوب من اختبارات الرياضيات. للدخول إلى الجامعة أو اجتياز امتحانات القبول في الرياضيات، عليك أن تعرف كيفية حل هذه المهام بشكل صحيح.

ولسوء الحظ، لا توجد خطة أو مخطط واحد للحل والتحديد قيمة غير معروفةلا يوجد شيء اسمه لوغاريتم، ولكن يمكن تطبيق قواعد معينة على كل متباينة رياضية أو معادلة لوغاريتمية. بادئ ذي بدء، يجب عليك معرفة ما إذا كان يمكن تبسيط التعبير أو يؤدي إليه المظهر العام. يمكنك تبسيط التعبيرات اللوغاريتمية الطويلة إذا كنت تستخدم خصائصها بشكل صحيح. دعونا نتعرف عليهم بسرعة.

عند حل المعادلات اللوغاريتمية، يجب علينا تحديد نوع اللوغاريتم الذي لدينا: قد يحتوي تعبير المثال على لوغاريتم طبيعي أو عشري.

وفيما يلي أمثلة ln100، ln1026. يتلخص الحل الذي توصلوا إليه في حقيقة أنهم بحاجة إلى تحديد القدرة التي يساوي فيها الأساس 10 100 و1026 على التوالي. للحصول على حلول اللوغاريتمات الطبيعيةتحتاج إلى تطبيق الهويات اللوغاريتمية أو خصائصها. دعونا نلقي نظرة على أمثلة لحل المشاكل اللوغاريتمية بأنواعها المختلفة.

كيفية استخدام صيغ اللوغاريتم: مع الأمثلة والحلول

لذلك، دعونا نلقي نظرة على أمثلة لاستخدام النظريات الأساسية حول اللوغاريتمات.

  1. يمكن استخدام خاصية لوغاريتم المنتج في المهام التي يكون من الضروري توسيعها أهمية عظيمةالأعداد ب إلى عوامل أبسط على سبيل المثال، سجل 2 4 + سجل 2 128 = سجل 2 (4*128) = سجل 2 512. الإجابة هي 9.
  2. سجل 4 8 = سجل 2 2 2 3 = 3/2 سجل 2 2 = 1.5 - كما ترون، باستخدام الخاصية الرابعة لقوة اللوغاريتم، تمكنا من حل تعبير يبدو معقدًا وغير قابل للحل. كل ما عليك فعله هو تحليل الأساس ثم إخراج القيم الأسية من علامة اللوغاريتم.

واجبات من امتحان الدولة الموحدة

غالبا ما توجد اللوغاريتمات في امتحانات القبول، وخاصة العديد من المسائل اللوغاريتمية في امتحان الدولة الموحدة (امتحان الدولة لجميع خريجي المدارس). عادةً ما تكون هذه المهام موجودة ليس فقط في الجزء أ (أسهل جزء اختبار من الامتحان)، ولكن أيضًا في الجزء ج (المهام الأكثر تعقيدًا وحجمًا). يتطلب الامتحان معرفة دقيقة وكاملة بموضوع "اللوغاريتمات الطبيعية".

الأمثلة والحلول للمشاكل مأخوذة من المسؤول خيارات امتحان الدولة الموحدة. دعونا نرى كيف يتم حل هذه المهام.

بالنظر إلى السجل 2 (2x-1) = 4. الحل:
دعونا نعيد كتابة التعبير، ونبسطه قليلًا log 2 (2x-1) = 2 2، ومن خلال تعريف اللوغاريتم نحصل على 2x-1 = 2 4، وبالتالي 2x = 17؛ س = 8.5.

  • من الأفضل اختزال جميع اللوغاريتمات إلى نفس الأساس حتى لا يكون الحل مرهقًا ومربكًا.
  • تتم الإشارة إلى جميع التعبيرات الموجودة تحت علامة اللوغاريتم على أنها إيجابية، لذلك، عندما يتم إخراج أس التعبير الموجود تحت علامة اللوغاريتم وقاعدته كمضاعف، يجب أن يكون التعبير المتبقي تحت اللوغاريتم موجبًا.

الحفاظ على خصوصيتك مهم بالنسبة لنا. لهذا السبب، قمنا بتطوير سياسة الخصوصية التي تصف كيفية استخدامنا لمعلوماتك وتخزينها. يرجى مراجعة ممارسات الخصوصية الخاصة بنا وإعلامنا إذا كانت لديك أي أسئلة.

جمع واستخدام المعلومات الشخصية

تشير المعلومات الشخصية إلى البيانات التي يمكن استخدامها لتحديد هوية شخص معين أو الاتصال به.

قد يُطلب منك تقديم معلوماتك الشخصية في أي وقت عند الاتصال بنا.

فيما يلي بعض الأمثلة على أنواع المعلومات الشخصية التي قد نجمعها وكيف يمكننا استخدام هذه المعلومات.

ما هي المعلومات الشخصية التي نجمعها:

  • عندما تقوم بتقديم طلب على الموقع، قد نقوم بجمع معلومات مختلفة، بما في ذلك اسمك ورقم هاتفك وعنوانك بريد إلكترونيإلخ.

كيف نستخدم المعلومات الشخصية الخاصة بك:

  • تم جمعها من قبلنا معلومات شخصيةيسمح لنا بالاتصال بك وإبلاغك بالعروض الفريدة والعروض الترويجية والأحداث الأخرى والأحداث القادمة.
  • من وقت لآخر، قد نستخدم معلوماتك الشخصية لإرسال إشعارات ومراسلات مهمة.
  • يجوز لنا أيضًا استخدام المعلومات الشخصية لأغراض داخلية مثل التدقيق وتحليل البيانات و دراسات مختلفةمن أجل تحسين الخدمات التي نقدمها وتزويدك بالتوصيات المتعلقة بخدماتنا.
  • إذا شاركت في سحب جائزة أو مسابقة أو عرض ترويجي مماثل، فقد نستخدم المعلومات التي تقدمها لإدارة مثل هذه البرامج.

الكشف عن المعلومات لأطراف ثالثة

نحن لا نكشف عن المعلومات الواردة منك إلى أطراف ثالثة.

الاستثناءات:

  • إذا لزم الأمر - وفقًا للقانون، والإجراءات القضائية، والإجراءات القانونية، و/أو بناءً على الطلبات العامة أو الطلبات الواردة من وكالات الحكومةعلى أراضي الاتحاد الروسي - الكشف عن معلوماتك الشخصية. يجوز لنا أيضًا الكشف عن معلومات عنك إذا قررنا أن هذا الكشف ضروري أو مناسب للأغراض الأمنية أو إنفاذ القانون أو غيرها من أغراض الصحة العامة. حالات مهمة.
  • في حالة إعادة التنظيم أو الدمج أو البيع، يجوز لنا نقل المعلومات الشخصية التي نجمعها إلى الطرف الثالث الذي يخلفه.

حماية المعلومات الشخصية

نحن نتخذ الاحتياطات - بما في ذلك الإدارية والفنية والمادية - لحماية معلوماتك الشخصية من الضياع والسرقة وسوء الاستخدام، بالإضافة إلى الوصول غير المصرح به والكشف والتغيير والتدمير.

احترام خصوصيتك على مستوى الشركة

للتأكد من أن معلوماتك الشخصية آمنة، نقوم بتوصيل معايير الخصوصية والأمان لموظفينا وننفذ ممارسات الخصوصية بشكل صارم.

ومع تطور المجتمع وزيادة تعقيد الإنتاج، تطورت الرياضيات أيضًا. الحركة من البسيط إلى المعقد. ومن المحاسبة العادية باستخدام أسلوب الجمع والطرح مع تكرارهما المتكرر، وصلنا إلى مفهوم الضرب والقسمة. أصبح تقليل عملية الضرب المتكررة هو مفهوم الأسي. تم تجميع الجداول الأولى لاعتماد الأرقام على القاعدة وعدد الأسي في القرن الثامن على يد عالم الرياضيات الهندي فاراسينا. منهم يمكنك حساب وقت حدوث اللوغاريتمات.

رسم تاريخي

كما حفز إحياء أوروبا في القرن السادس عشر تطور الميكانيكا. ت يتطلب كمية كبيرة من الحسابالمتعلقة بضرب وقسمة الأعداد ذات الأرقام المتعددة. كانت الطاولات القديمة ذات خدمة رائعة. لقد جعلوا من الممكن استبدال العمليات المعقدة بعمليات أبسط - الجمع والطرح. وكانت الخطوة الكبيرة إلى الأمام هي عمل عالم الرياضيات مايكل ستيفل، الذي نُشر عام 1544، والذي أدرك فيه فكرة العديد من علماء الرياضيات. هذا جعل من الممكن استخدام الجداول ليس فقط للقوى في شكل أعداد أولية، ولكن أيضًا للقوى العقلانية التعسفية.

في عام 1614، قام الاسكتلندي جون نابير، الذي طور هذه الأفكار، بتقديم المصطلح الجديد "لوغاريتم الرقم" لأول مرة. جديد جداول معقدةلحساب لوغاريتمات الجيب وجيب التمام، وكذلك الظلال. هذا قلل بشكل كبير من عمل علماء الفلك.

بدأت تظهر جداول جديدة استخدمها العلماء بنجاح لمدة ثلاثة قرون. لقد مر الكثير من الوقت من قبل عملية جديدةفي الجبر اكتسب شكله الكامل. وتم تعريف اللوغاريتم ودراسة خصائصه.

فقط في القرن العشرين، مع ظهور الآلة الحاسبة والكمبيوتر، تخلت البشرية عن الجداول القديمة التي عملت بنجاح طوال القرن الثالث عشر.

اليوم نسمي لوغاريتم b للأساس a الرقم x الذي يمثل قوة a لتكوين b. يتم كتابة هذا كصيغة: x = log a(b).

على سبيل المثال، سجل 3(9) سيكون مساويًا لـ 2. وهذا واضح إذا اتبعت التعريف. وإذا رفعنا 3 للقوة 2، نحصل على 9.

وبالتالي، فإن التعريف المصاغ يضع قيدًا واحدًا فقط: يجب أن يكون الرقمان a وb حقيقيين.

أنواع اللوغاريتمات

التعريف الكلاسيكي يسمى اللوغاريتم الحقيقي وهو في الواقع الحل للمعادلة a x = b. الخيار أ = 1 هو حدي ولا يهم. تنبيه: 1 إلى أي قوة يساوي 1.

القيمة الحقيقية للوغاريتميتم تعريفه فقط عندما يكون الأساس والوسيطة أكبر من 0، ويجب ألا يساوي الأساس 1.

مكان خاص في مجال الرياضياتلعب اللوغاريتمات، والتي سيتم تسميتها حسب حجم قاعدتها:

القواعد والقيود

الخاصية الأساسية للوغاريتمات هي القاعدة: لوغاريتم المنتج يساوي المجموع اللوغاريتمي. سجل أب = سجل أ (ب) + سجل أ (ع).

كبديل لهذه العبارة سيكون هناك: log c(b/p) = log c(b) - log c(p)، دالة حاصل القسمة تساوي الفرق بين الدوال.

من القاعدتين السابقتين من السهل أن نرى أن: log a(b p) = p * log a(b).

تشمل الخصائص الأخرى ما يلي:

تعليق. ليست هناك حاجة لارتكاب خطأ شائع - لوغاريتم المجموع لا يساوي مجموع اللوغاريتمات.

لعدة قرون، كانت عملية العثور على اللوغاريتم مهمة تستغرق وقتًا طويلاً إلى حد ما. استخدم علماء الرياضيات صيغة معروفةالنظرية اللوغاريتمية للتوسع متعدد الحدود:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n)، حيث n - عدد طبيعيأكبر من 1، وهو ما يحدد دقة الحساب.

تم حساب اللوغاريتمات ذات القواعد الأخرى باستخدام نظرية الانتقال من قاعدة إلى أخرى وخاصية لوغاريتم المنتج.

نظرًا لأن هذه الطريقة تتطلب عمالة كثيفة جدًا و عند حل المشاكل العمليةمن الصعب تنفيذه، استخدمنا جداول اللوغاريتمات المعدة مسبقًا، مما أدى إلى تسريع العمل بشكل كبير.

في بعض الحالات، تم استخدام الرسوم البيانية اللوغاريتمية المصممة خصيصًا، مما أعطى دقة أقل، ولكنه أدى إلى تسريع عملية البحث بشكل كبير القيمة المطلوبة. يتيح لك منحنى الدالة y = log a(x)، المبني على عدة نقاط، استخدام مسطرة عادية للعثور على قيمة الدالة عند أي نقطة أخرى. المهندسين منذ وقت طويلولهذه الأغراض، تم استخدام ما يسمى بورق الرسم البياني.

في القرن السابع عشر، ظهرت أول شروط الحوسبة التناظرية المساعدة، والتي القرن ال 19حصلت على نظرة نهائية. وكان الجهاز الأكثر نجاحا يسمى قاعدة الشريحة. على الرغم من بساطة الجهاز، إلا أن مظهره أدى إلى تسريع عملية جميع الحسابات الهندسية بشكل كبير، ومن الصعب المبالغة في تقدير ذلك. حاليا، عدد قليل من الناس على دراية بهذا الجهاز.

أدى ظهور الآلات الحاسبة وأجهزة الكمبيوتر إلى جعل استخدام أي أجهزة أخرى بلا جدوى.

المعادلات والمتباينات

لحل المعادلات والمتباينات المختلفة باستخدام اللوغاريتمات، يتم استخدام الصيغ التالية:

  • الانتقال من قاعدة إلى أخرى: log a(b) = log c(b) / log c(a);
  • نتيجة للخيار السابق: log a(b) = 1 / log b(a).

لحل عدم المساواة من المفيد معرفة:

  • لن تكون قيمة اللوغاريتم موجبة إلا إذا كان الأساس والوسيطة أكبر أو أقل من واحد؛ إذا تم انتهاك شرط واحد على الأقل، ستكون قيمة اللوغاريتم سلبية.
  • إذا تم تطبيق دالة اللوغاريتم على الجانبين الأيمن والأيسر للمتباينة، وكان أساس اللوغاريتم أكبر من واحد، فسيتم الحفاظ على علامة المتباينة؛ وإلا فإنه يتغير.

مشاكل العينة

دعونا نفكر في عدة خيارات لاستخدام اللوغاريتمات وخصائصها. أمثلة على حل المعادلات:

فكر في خيار وضع اللوغاريتم في قوة:

  • المشكلة 3. احسب 25 ^ سجل 5 (3). الحل: في ظروف المشكلة، يكون الإدخال مشابهًا لما يلي (5^2)^log5(3) أو 5^(2 * log 5(3)). لنكتبها بشكل مختلف: 5^log 5(3*2)، أو يمكن كتابة مربع الرقم كوسيطة دالة كمربع الدالة نفسها (5^log 5(3))^2. باستخدام خصائص اللوغاريتمات، هذا التعبير يساوي 3^2. الجواب: نتيجة للحساب نحصل على 9.

الاستخدام العملي

كونها أداة رياضية بحتة، يبدو الأمر بعيدا عن ذلك الحياه الحقيقيهأن اللوغاريتم اكتسب فجأة أهمية كبيرة لوصف الأشياء في العالم الحقيقي. من الصعب العثور على علم لا يتم استخدامه فيه. وهذا لا ينطبق تمامًا على مجالات المعرفة الطبيعية فحسب، بل أيضًا على مجالات المعرفة الإنسانية.

التبعيات اللوغاريتمية

فيما يلي بعض الأمثلة على التبعيات العددية:

الميكانيكا والفيزياء

تاريخيًا، تطورت الميكانيكا والفيزياء دائمًا باستخدام الأساليب الرياضيةالبحث وفي الوقت نفسه بمثابة حافز لتطوير الرياضيات، بما في ذلك اللوغاريتمات. إن نظرية معظم قوانين الفيزياء مكتوبة بلغة الرياضيات. دعونا نعطي مثالين فقط من الأوصاف القوانين الفيزيائيةباستخدام اللوغاريتم.

يمكن حل مشكلة حساب كمية معقدة مثل سرعة الصاروخ باستخدام صيغة تسيولكوفسكي، التي وضعت الأساس لنظرية استكشاف الفضاء:

V = I * ln (M1/M2)، حيث

  • V هي السرعة النهائية للطائرة.
  • أنا - دفعة محددة للمحرك.
  • م 1 – الكتلة الأولية للصاروخ.
  • م2 – الكتلة النهائية .

مثال مهم آخر- يستخدم هذا في صيغة عالم عظيم آخر ماكس بلانك، والتي تعمل على تقييم حالة التوازن في الديناميكا الحرارية.

S = ك * قانون الجنسية (Ω)، حيث

  • S - الخاصية الديناميكية الحرارية.
  • ك – ثابت بولتزمان.
  • Ω هو الوزن الإحصائي للحالات المختلفة.

كيمياء

الأقل وضوحًا هو استخدام الصيغ في الكيمياء التي تحتوي على نسبة اللوغاريتمات. دعونا نعطي مثالين فقط:

  • معادلة نيرنست، حالة احتمالية الأكسدة والاختزال للوسط فيما يتعلق بنشاط المواد وثابت التوازن.
  • لا يمكن أيضًا حساب ثوابت مثل مؤشر التحلل الذاتي وحموضة المحلول بدون وظيفتنا.

علم النفس والبيولوجيا

وليس من الواضح على الإطلاق ما علاقة علم النفس بالأمر. لقد اتضح أن قوة الإحساس يتم وصفها جيدًا من خلال هذه الوظيفة على أنها النسبة العكسية لقيمة شدة التحفيز إلى قيمة الشدة الأقل.

بعد الأمثلة المذكورة أعلاه، لم يعد من المستغرب أن موضوع اللوغاريتمات يستخدم على نطاق واسع في علم الأحياء. يمكن كتابة مجلدات كاملة عن الأشكال البيولوجية التي تتوافق مع اللوالب اللوغاريتمية.

مناطق أخرى

ويبدو أن وجود العالم مستحيل دون الارتباط بهذه الوظيفة، وهي التي تحكم جميع القوانين. خاصة عندما يتعلق الأمر بقوانين الطبيعة المتوالية الهندسية. يجدر بنا أن ننتقل إلى موقع MatProfi، وهناك العديد من هذه الأمثلة في مجالات النشاط التالية:

القائمة يمكن أن تكون لا نهاية لها. بعد أن أتقنت المبادئ الأساسية لهذه الوظيفة، يمكنك الانغماس في عالم الحكمة اللانهائية.

اللوغاريتمات، مثل أي أرقام، يمكن جمعها وطرحها وتحويلها بكل الطرق. ولكن بما أن اللوغاريتمات ليست أرقامًا عادية تمامًا، فهناك قواعد تسمى هنا الخصائص الرئيسية.

تحتاج بالتأكيد إلى معرفة هذه القواعد - بدونها، لا يمكن حل أي مشكلة لوغاريتمية خطيرة. بالإضافة إلى ذلك، هناك عدد قليل جدًا منهم - يمكنك تعلم كل شيء في يوم واحد. اذا هيا بنا نبدأ.

جمع وطرح اللوغاريتمات

فكر في لوغاريتمين لهما نفس الأساس: السجل أ سوسجل أ ذ. ومن ثم يمكن إضافتها وطرحها، و:

  1. سجل أ س+ سجل أ ذ= سجل أ (س · ذ);
  2. سجل أ س- سجل أ ذ= سجل أ (س : ذ).

إذن، مجموع اللوغاريتمات يساوي لوغاريتم حاصل الضرب، والفرق يساوي لوغاريتم حاصل القسمة. يرجى ملاحظة: النقطة الأساسية هنا هي أسباب متطابقة. إذا كانت الأسباب مختلفة، فهذه القواعد لا تعمل!

ستساعدك هذه الصيغ في حساب التعبير اللوغاريتمي حتى في حالة عدم أخذ أجزائه الفردية في الاعتبار (راجع الدرس "ما هو اللوغاريتم"). ألقِ نظرة على الأمثلة وانظر:

سجل 6 4 + سجل 6 9.

بما أن اللوغاريتمات لها نفس الأساس، فإننا نستخدم صيغة الجمع:
سجل 6 4 + سجل 6 9 = سجل 6 (4 9) = سجل 6 36 = 2.

مهمة. أوجد قيمة التعبير: log 2 48 − log 2 3.

القواعد هي نفسها، نستخدم صيغة الفرق:
سجل 2 48 - سجل 2 3 = سجل 2 (48: 3) = سجل 2 16 = 4.

مهمة. أوجد قيمة التعبير: log 3 135 − log 3 5.

مرة أخرى القواعد هي نفسها، لذلك لدينا:
سجل 3 135 - سجل 3 5 = سجل 3 (135: 5) = سجل 3 27 = 3.

كما ترون، تتكون التعبيرات الأصلية من لوغاريتمات "سيئة"، والتي لا يتم حسابها بشكل منفصل. ولكن بعد التحويلات يتم الحصول على أرقام طبيعية تماما. كثيرون مبنيون على هذه الحقيقة أوراق الاختبار. نعم، يتم تقديم التعبيرات الشبيهة بالاختبار بكل جدية (أحيانًا بدون أي تغييرات تقريبًا) في امتحان الدولة الموحدة.

استخراج الأس من اللوغاريتم

الآن دعونا نعقد المهمة قليلاً. ماذا لو كانت قاعدة أو وسيطة اللوغاريتم قوة؟ ومن ثم يمكن إخراج أس هذه الدرجة من إشارة اللوغاريتم وفق القواعد التالية:

من السهل ملاحظة ذلك القاعدة الأخيرةيتبع الأولين. ولكن من الأفضل أن تتذكرها على أي حال - ففي بعض الحالات سوف تقلل بشكل كبير من حجم العمليات الحسابية.

بالطبع، كل هذه القواعد تكون منطقية إذا تمت ملاحظة ODZ للوغاريتم: أ > 0, أ ≠ 1, س> 0. وشيء آخر: تعلم كيفية تطبيق جميع الصيغ ليس فقط من اليسار إلى اليمين، ولكن أيضًا بالعكس، أي. يمكنك إدخال الأرقام قبل تسجيل اللوغاريتم في اللوغاريتم نفسه. وهذا هو المطلوب في أغلب الأحيان.

مهمة. أوجد قيمة التعبير: log 7 49 6 .

دعونا نتخلص من الدرجة في الوسيطة باستخدام الصيغة الأولى:
سجل 7 49 6 = 6 سجل 7 49 = 6 2 = 12

مهمة. ابحث عن معنى العبارة:

[تعليق على الصورة]

لاحظ أن المقام يحتوي على لوغاريتم، قاعدته ووسيطه عبارة عن قوى دقيقة: 16 = 2 4 ; 49 = 7 2. لدينا:

[تعليق على الصورة]

أعتقد أن المثال الأخير يتطلب بعض التوضيح. أين ذهبت اللوغاريتمات؟ حتى اللحظة الأخيرة نحن نعمل فقط مع القاسم. لقد قدمنا ​​أساس ووسيطة اللوغاريتم الموجود هناك في شكل قوى وأزلنا الأسس - لقد حصلنا على كسر "من ثلاثة طوابق".

الآن دعونا نلقي نظرة على الكسر الرئيسي. يحتوي البسط والمقام على نفس الرقم: log 2 7. بما أن log 2 7 ≠ 0، يمكننا تبسيط الكسر - سيبقى 2/4 في المقام. ووفقا للقواعد الحسابية، يمكن نقل الأربعة إلى البسط، وهذا ما تم. وكانت النتيجة الجواب: 2.

الانتقال إلى أساس جديد

عند الحديث عن قواعد جمع وطرح اللوغاريتمات، أكدت على وجه التحديد أنها تعمل فقط مع نفس القواعد. وماذا لو كانت الأسباب مختلفة؟ ماذا لو لم تكن صلاحيات محددة لنفس العدد؟

تأتي صيغ الانتقال إلى أساس جديد للإنقاذ. دعونا صياغتها في شكل نظرية:

دع سجل اللوغاريتم يعطى أ س. ثم لأي رقم جمثل ذلك ج> 0 و ج≠ 1، المساواة صحيحة:

[تعليق على الصورة]

على وجه الخصوص، إذا وضعنا ج = س، نحن نحصل:

[تعليق على الصورة]

ويترتب على الصيغة الثانية أنه يمكن تبديل أساس ووسيطة اللوغاريتم، ولكن في هذه الحالة يتم "قلب" التعبير بأكمله، أي. يظهر اللوغاريتم في المقام.

نادرًا ما توجد هذه الصيغ في التعبيرات العددية العادية. من الممكن تقييم مدى ملاءمتها فقط عند حل المعادلات اللوغاريتمية والمتباينات.

ولكن هناك مشاكل لا يمكن حلها على الإطلاق إلا بالانتقال إلى أساس جديد. دعونا نلقي نظرة على اثنين من هذه:

مهمة. أوجد قيمة التعبير: سجل 5 16 سجل 2 25.

لاحظ أن وسيطات كلا اللوغاريتمات تحتوي على قوى دقيقة. لنأخذ المؤشرات: log 5 16 = log 5 2 4 = 4log 5 2; سجل 2 25 = سجل 2 5 2 = 2سجل 2 5;

الآن دعونا "نعكس" اللوغاريتم الثاني:

[تعليق على الصورة]

وبما أن حاصل الضرب لا يتغير عند إعادة ترتيب العوامل، فقد ضربنا أربعة في اثنين بهدوء، ثم تعاملنا مع اللوغاريتمات.

مهمة. أوجد قيمة التعبير: log 9 100 lg 3.

أساس ووسيطة اللوغاريتم الأول هما القوى الدقيقة. دعنا نكتب هذا ونتخلص من المؤشرات:

[تعليق على الصورة]

الآن دعونا نتخلص من اللوغاريتم العشري بالانتقال إلى قاعدة جديدة:

[تعليق على الصورة]

الهوية اللوغاريتمية الأساسية

في كثير من الأحيان، في عملية الحل، من الضروري تمثيل رقم على هيئة لوغاريتم لقاعدة معينة. في هذه الحالة، سوف تساعدنا الصيغ التالية:

في الحالة الأولى العدد نيصبح مؤشرا على درجة الوقوف في الحجة. رقم نيمكن أن تكون أي شيء على الإطلاق، لأنها مجرد قيمة لوغاريتمية.

الصيغة الثانية هي في الواقع تعريف معاد صياغته. وهذا ما يطلق عليه: الهوية اللوغاريتمية الأساسية.

في الواقع، ماذا سيحدث إذا كان العدد برفع إلى هذه القوة أن العدد بلهذه القوة يعطي الرقم أ؟ هذا صحيح: تحصل على نفس الرقم أ. اقرأ هذه الفقرة بعناية مرة أخرى - كثير من الناس عالقون فيها.

مثل صيغ الانتقال إلى قاعدة جديدة، تكون الهوية اللوغاريتمية الأساسية في بعض الأحيان هي الحل الوحيد الممكن.

مهمة. ابحث عن معنى العبارة:

[تعليق على الصورة]

لاحظ أن log 25 64 = log 5 8 - ببساطة أخذ المربع من قاعدة اللوغاريتم ووسيطه. مع الأخذ بعين الاعتبار قواعد ضرب القوى ذات الأساس نفسه، نحصل على:

[تعليق على الصورة]

إذا كان أي شخص لا يعرف، كانت هذه مهمة حقيقية من امتحان الدولة الموحدة :)

الوحدة اللوغاريتمية والصفر اللوغاريتمي

في الختام، سأقدم هويتين يصعب وصفهما بالخصائص - بل هما نتيجة لتعريف اللوغاريتم. إنهم يظهرون باستمرار في المشاكل، ومن المدهش أنهم يخلقون مشاكل حتى للطلاب "المتقدمين".

  1. سجل أ أ= 1 هي وحدة لوغاريتمية. تذكر مرة واحدة وإلى الأبد: اللوغاريتم لأي قاعدة أمن هذه القاعدة ذاتها يساوي واحدًا.
  2. سجل أ 1 = 0 هو صفر لوغاريتمي. قاعدة أيمكن أن يكون أي شيء، ولكن إذا كانت الوسيطة تحتوي على واحد، فإن اللوغاريتم يساوي صفرًا! لأن أ 0 = 1 هو نتيجة مباشرة للتعريف.

هذا كل الخصائص. تأكد من ممارسة وضعها موضع التنفيذ! قم بتنزيل ورقة الغش في بداية الدرس وطباعتها وحل المشكلات.



جديد على الموقع

>

الأكثر شعبية