Dom Zabieg dentystyczny Zasada otwierania nawiasów w równaniu. Temat: Rozwiązywanie równań

Zasada otwierania nawiasów w równaniu. Temat: Rozwiązywanie równań

W V wieku p.n.e. starożytny grecki filozof Zenon z Elei sformułował swoje słynne aporie, z których najsłynniejszą jest aporia „Achilles i żółw”. Oto jak to brzmi:

Załóżmy, że Achilles biegnie dziesięć razy szybciej niż żółw i jest o tysiąc kroków za nim. W czasie, jaki potrzebuje Achilles na pokonanie tej odległości, żółw wykona sto kroków w tym samym kierunku. Kiedy Achilles przebiegnie sto kroków, żółw czołga się przez kolejne dziesięć kroków i tak dalej. Proces ten będzie trwał w nieskończoność, Achilles nigdy nie dogoni żółwia.

To rozumowanie stało się logicznym szokiem dla wszystkich kolejnych pokoleń. Arystoteles, Diogenes, Kant, Hegel, Hilbert... Wszyscy oni w ten czy inny sposób rozważali aporię Zenona. Wstrząs był tak silny, że „ ...dyskusje trwają do dziś, aby dojść do wspólnego stanowiska co do istoty paradoksów społeczność naukowa dotychczas nie było to możliwe... zajmowali się badaniem tej kwestii Analiza matematyczna, teoria mnogości, nowe podejścia fizyczne i filozoficzne; żaden z nich nie stał się ogólnie przyjętym rozwiązaniem problemu...„[Wikipedia, „Aporia Zenona”. Każdy rozumie, że daje się oszukać, ale nikt nie rozumie, na czym to oszustwo polega.

Z matematycznego punktu widzenia Zenon w swoich aporiach wyraźnie pokazał przejście od ilości do. To przejście oznacza zastosowanie, a nie trwałe. O ile rozumiem, aparat matematyczny do stosowania zmiennych jednostek miary albo nie został jeszcze opracowany, albo nie został zastosowany do aporii Zenona. Stosowanie naszej zwykłej logiki prowadzi nas w pułapkę. My, ze względu na bezwładność myślenia, do wartości odwrotności stosujemy stałe jednostki czasu. Z fizycznego punktu widzenia wygląda to na spowolnienie czasu, aż do całkowitego zatrzymania się w momencie, gdy Achilles dogoni żółwia. Jeśli czas się zatrzyma, Achilles nie będzie już w stanie przegonić żółwia.

Jeśli odwrócimy naszą zwykłą logikę, wszystko ułoży się na swoim miejscu. Achilles biegnie z stała prędkość. Każdy kolejny odcinek jego ścieżki jest dziesięć razy krótszy od poprzedniego. W związku z tym czas poświęcony na jego pokonanie jest dziesięć razy krótszy niż poprzedni. Jeśli zastosujemy w tej sytuacji koncepcję „nieskończoności”, wówczas słuszne będzie stwierdzenie: „Achilles nieskończenie szybko dogoni żółwia”.

Jak uniknąć tej logicznej pułapki? Pozostań w stałych jednostkach czasu i nie przełączaj się na jednostki odwrotne. W języku Zenona wygląda to tak:

W czasie, jaki zajmie Achillesowi przebiegnięcie tysiąca kroków, żółw wykona sto kroków w tym samym kierunku. W następnym odstępie czasowym, równym pierwszemu, Achilles przebiegnie kolejne tysiąc kroków, a żółw przeczołga się sto kroków. Teraz Achilles jest osiemset kroków przed żółwiem.

Podejście to adekwatnie opisuje rzeczywistość, bez żadnych logicznych paradoksów. Ale to nie jest kompletne rozwiązanie Problemy. Stwierdzenie Einsteina o nieodpartej prędkości światła jest bardzo podobne do aporii Zenona „Achilles i żółw”. Musimy jeszcze przestudiować, przemyśleć i rozwiązać ten problem. A rozwiązania należy szukać nie w nieskończenie dużych liczbach, ale w jednostkach miary.

Kolejna interesująca aporia Zenona opowiada o lecącej strzałce:

Lecąca strzała jest nieruchoma, ponieważ w każdej chwili jest w spoczynku, a ponieważ jest w spoczynku w każdej chwili, jest zawsze w spoczynku.

W tej aporii paradoks logiczny zostaje przezwyciężony w bardzo prosty sposób - wystarczy wyjaśnić, że w każdym momencie lecąca strzała znajduje się w spoczynku w różnych punktach przestrzeni, co w rzeczywistości jest ruchem. Należy tutaj zwrócić uwagę na jeszcze jedną kwestię. Na podstawie jednego zdjęcia samochodu na drodze nie da się określić ani faktu jego ruchu, ani odległości do niego. Aby ustalić, czy samochód się porusza, potrzebne są dwa zdjęcia wykonane z tego samego punktu w różnych momentach w czasie, ale nie można określić odległości od nich. Aby określić odległość do samochodu, potrzebujesz dwóch zdjęć zrobionych z różnych punktów przestrzeni w tym samym momencie, ale na ich podstawie nie można określić faktu ruchu (oczywiście nadal potrzebujesz dodatkowych danych do obliczeń, trygonometria ci pomoże ). Na co chcę zwrócić uwagę Specjalna uwaga, jest to, że dwa punkty w czasie i dwa punkty w przestrzeni to różne rzeczy, których nie należy mylić, ponieważ zapewniają różne możliwości badawcze.

środa, 4 lipca 2018 r

Różnice między zestawem a zestawem wielokrotnym są bardzo dobrze opisane w Wikipedii. Zobaczmy.

Jak widać „w zestawie nie mogą być dwa identyczne elementy”, ale jeśli w zestawie znajdują się identyczne elementy, taki zbiór nazywa się „multizbiorem”. Rozsądne istoty nigdy nie zrozumieją tak absurdalnej logiki. To jest poziom gadających papug i tresowanych małp, które nie mają inteligencji od słowa „całkowicie”. Matematycy zachowują się jak zwykli trenerzy, wmawiając nam swoje absurdalne pomysły.

Dawno, dawno temu inżynierowie, którzy zbudowali most, pływali łodzią pod mostem podczas testowania mostu. Jeśli most się zawali, przeciętny inżynier zginął pod gruzami swojego dzieła. Jeśli most wytrzymał obciążenie, utalentowany inżynier zbudował inne mosty.

Bez względu na to, jak matematycy ukrywają się za zwrotem „pamiętaj, jestem w domu” lub raczej „matematyka bada pojęcia abstrakcyjne”, istnieje jedna pępowina, która nierozerwalnie łączy ich z rzeczywistością. Ta pępowina to pieniądze. Odpowiedni teoria matematyczna zestawy dla samych matematyków.

Bardzo dobrze uczyliśmy się matematyki, a teraz siedzimy przy kasie i wypłacamy pensje. Tak więc matematyk przychodzi do nas po swoje pieniądze. Odliczamy mu całą kwotę i układamy ją na naszym stole w różnych stosach, do których wkładamy banknoty o tym samym nominale. Następnie bierzemy po jednym rachunku z każdego stosu i dajemy matematykowi jego „matematyczny zestaw wynagrodzeń”. Wyjaśnijmy matematykowi, że pozostałe rachunki otrzyma dopiero wtedy, gdy udowodni, że zbiór bez identycznych elementów nie jest równy zbiorowi z identycznymi elementami. Tutaj zaczyna się zabawa.

Przede wszystkim sprawdzi się logika posłów: „Można to zastosować do innych, ale nie do mnie!” Wtedy zaczną nas uspokajać, że banknoty o tym samym nominale mają różne numery banknotów, a co za tym idzie, nie można ich uważać za te same elementy. OK, policzmy pensje w monetach - na monetach nie ma cyfr. Tutaj matematyk zacznie gorączkowo przypominać sobie fizykę: różne monety mają różną ilość brudu, struktura kryształów i układ atomów jest dla każdej monety unikalna...

I teraz mam najciekawsze pytanie: gdzie jest granica, za którą elementy multizbioru zamieniają się w elementy zbioru i odwrotnie? Taka linia nie istnieje – o wszystkim decydują szamani, nauka nawet nie jest bliska kłamstwa.

Popatrz tutaj. Wybieramy stadiony piłkarskie z tą samą powierzchnią pola. Pola pól są takie same - co oznacza, że ​​mamy multizbiór. Ale jeśli spojrzymy na nazwy tych samych stadionów, otrzymamy wiele, ponieważ nazwy są różne. Jak widać, ten sam zbiór elementów jest jednocześnie zbiorem i multizbiorem. Który jest poprawny? I tu matematyk-szaman-sostrzysta wyciąga z rękawa asa atutowego i zaczyna nam opowiadać albo o zestawie, albo o wielokrotności. W każdym razie przekona nas, że ma rację.

Aby zrozumieć, jak współcześni szamani operują teorią mnogości, wiążąc ją z rzeczywistością, wystarczy odpowiedzieć na jedno pytanie: czym różnią się elementy jednego zbioru od elementów innego zbioru? Pokażę ci, bez żadnego „wyobrażalnego jako pojedyncza całość” lub „niewyobrażalnego jako pojedyncza całość”.

Niedziela, 18 marca 2018 r

Suma cyfr liczby to taniec szamanów z tamburynem, który nie ma nic wspólnego z matematyką. Tak, na lekcjach matematyki uczy się nas znajdować sumę cyfr liczby i posługiwać się nią, ale po to są szamani, aby uczyć swoich potomków swoich umiejętności i mądrości, w przeciwnym razie szamani po prostu wymrą.

Czy potrzebujesz dowodu? Otwórz Wikipedię i spróbuj znaleźć stronę „Suma cyfr liczby”. Ona nie istnieje. W matematyce nie ma wzoru, za pomocą którego można by znaleźć sumę cyfr dowolnej liczby. Przecież liczby to symbole graficzne, za pomocą których piszemy liczby, a w języku matematyki zadanie brzmi tak: „Znajdź sumę symboli graficznych reprezentujących dowolną liczbę”. Matematycy nie potrafią rozwiązać tego problemu, ale szamani mogą to zrobić z łatwością.

Zastanówmy się, co i jak zrobić, aby znaleźć sumę cyfr danej liczby. I tak otrzymamy liczbę 12345. Co należy zrobić, aby znaleźć sumę cyfr tej liczby? Rozważmy wszystkie kroki w kolejności.

1. Zapisz numer na kartce papieru. Co my zrobiliśmy? Przekształciliśmy liczbę w graficzny symbol liczbowy. To nie jest operacja matematyczna.

2. Jeden powstały obraz wycinamy na kilka obrazków zawierających indywidualne liczby. Cięcie obrazu nie jest operacją matematyczną.

3. Zamień poszczególne symbole graficzne na liczby. To nie jest operacja matematyczna.

4. Dodaj powstałe liczby. Teraz to jest matematyka.

Suma cyfr liczby 12345 wynosi 15. Są to „kursy krojenia i szycia”, prowadzone przez szamanów, z których korzystają matematycy. Ale to nie wszystko.

Z matematycznego punktu widzenia nie ma znaczenia, w jakim systemie liczbowym zapiszemy liczbę. Więc w różne systemy W rachunku różniczkowym suma cyfr tej samej liczby będzie inna. W matematyce system liczbowy jest oznaczony jako indeks dolny po prawej stronie liczby. Z duża liczba 12345 Nie chcę oszukiwać głowy, spójrzmy na liczbę 26 z artykułu o . Zapiszmy tę liczbę w systemie binarnym, ósemkowym, dziesiętnym i szesnastkowym. Nie będziemy patrzeć na każdy krok pod mikroskopem; już to zrobiliśmy. Spójrzmy na wynik.

Jak widać, w różnych systemach liczbowych suma cyfr tej samej liczby jest inna. Wynik ten nie ma nic wspólnego z matematyką. To tak jakby wyznaczając pole prostokąta w metrach i centymetrach, otrzymałbyś zupełnie inne wyniki.

Zero wygląda tak samo we wszystkich systemach liczbowych i nie ma sumy cyfr. To kolejny argument przemawiający za tym, że. Pytanie do matematyków: jak w matematyce oznacza się coś, co nie jest liczbą? Co, dla matematyków nie istnieje nic poza liczbami? Mogę na to pozwolić szamanom, ale nie naukowcom. Rzeczywistość to nie tylko liczby.

Uzyskany wynik należy uznać za dowód, że systemy liczbowe są jednostkami miary liczb. W końcu nie możemy porównywać liczb o różnych jednostkach miary. Jeśli te same działania z różnymi jednostkami miary tej samej wielkości prowadzą do różnych wyników po ich porównaniu, to nie ma to nic wspólnego z matematyką.

Czym jest prawdziwa matematyka? Dzieje się tak wtedy, gdy wynik operacji matematycznej nie zależy od wielkości liczby, użytej jednostki miary i tego, kto wykonuje tę czynność.

Znak na drzwiach Otwiera drzwi i mówi:

Oh! Czy to nie jest damska toaleta?
- Młoda kobieta! To laboratorium do badania niedefilicznej świętości dusz podczas ich wznoszenia się do nieba! Aureola na górze i strzałka w górę. Jaka inna toaleta?

Kobieta... Aureola na górze i strzałka w dół oznaczają mężczyznę.

Jeśli takie dzieło sztuki projektowej przelatuje Ci przed oczami kilka razy dziennie,

Nic więc dziwnego, że nagle w swoim samochodzie znajdujesz dziwną ikonę:

Osobiście staram się widzieć minus cztery stopnie u osoby robiącej kupę (jeden obrazek) (kompozycja kilku obrazków: znak minus, cyfra cztery, oznaczenie stopni). I nie sądzę, że ta dziewczyna jest głupia, która nie zna fizyki. Ma po prostu silny stereotyp postrzegania obrazów graficznych. A matematycy uczą nas tego cały czas. Oto przykład.

1A nie oznacza „minus cztery stopnie” ani „jeden a”. To jest „kupujący człowiek” lub liczba „dwadzieścia sześć” w zapisie szesnastkowym. Osoby, które stale pracują w tym systemie liczbowym, automatycznie postrzegają cyfrę i literę jako jeden symbol graficzny.

W tym filmie przeanalizujemy cały zestaw równań liniowych rozwiązywanych przy użyciu tego samego algorytmu - dlatego nazywane są one najprostszymi.

Najpierw zdefiniujmy: co to jest równanie liniowe a który z nich nazywa się najprostszym?

Równanie liniowe to takie, w którym występuje tylko jedna zmienna i tylko do pierwszego stopnia.

Najprostsze równanie oznacza konstrukcję:

Wszystkie pozostałe równania liniowe sprowadzamy do najprostszych za pomocą algorytmu:

  1. Rozwiń nawiasy, jeśli istnieją;
  2. Przenieś terminy zawierające zmienną na jedną stronę znaku równości, a terminy bez zmiennej na drugą;
  3. Podaj podobne wyrazy po lewej i prawej stronie znaku równości;
  4. Podziel powstałe równanie przez współczynnik zmiennej $x$.

Oczywiście ten algorytm nie zawsze pomaga. Faktem jest, że czasem po tych wszystkich zabiegach współczynnik zmiennej $x$ okazuje się równy zeru. W takim przypadku możliwe są dwie opcje:

  1. Równanie nie ma w ogóle rozwiązań. Na przykład, gdy okaże się, że $0\cdot x=8$, tj. po lewej stronie jest zero, a po prawej liczba różna od zera. W poniższym filmie przyjrzymy się kilku powodom, dla których taka sytuacja jest możliwa.
  2. Rozwiązaniem są wszystkie liczby. Jest to możliwe tylko wtedy, gdy równanie zostało sprowadzone do konstrukcji $0\cdot x=0$. Jest całkiem logiczne, że niezależnie od tego, jakie $x$ podstawimy, i tak okaże się, że „zero jest równe zeru”, tj. poprawna równość liczbowa.

Zobaczmy teraz, jak to wszystko działa na przykładach z życia wziętych.

Przykłady rozwiązywania równań

Dziś mamy do czynienia z równaniami liniowymi i to tylko najprostszymi. Ogólnie równanie liniowe oznacza dowolną równość, która zawiera dokładnie jedną zmienną i dotyczy tylko pierwszego stopnia.

Takie konstrukcje rozwiązuje się w przybliżeniu w ten sam sposób:

  1. Przede wszystkim należy rozwinąć nawiasy, jeśli takie istnieją (jak w naszym ostatnim przykładzie);
  2. Następnie połącz podobnie
  3. Na koniec wyizoluj zmienną, tj. przesuń wszystko, co jest związane ze zmienną – terminy, w jakich jest ona zawarta – na jedną stronę, a wszystko, co pozostaje bez niej, na drugą stronę.

Następnie z reguły trzeba przynieść podobne po każdej stronie powstałej równości, a potem pozostaje tylko podzielić przez współczynnik „x” i otrzymamy ostateczną odpowiedź.

W teorii wygląda to pięknie i prosto, jednak w praktyce nawet doświadczeni licealiści mogą popełniać obraźliwe błędy w dość prostych sytuacjach równania liniowe. Zazwyczaj błędy popełniane są podczas otwierania nawiasów lub przy obliczaniu „plusów” i „minusów”.

Ponadto zdarza się, że równanie liniowe w ogóle nie ma rozwiązań lub że rozwiązaniem jest cała oś liczbowa, tj. Jakikolwiek numer. Przyjrzymy się tym subtelnościom podczas dzisiejszej lekcji. Ale zaczniemy, jak już zrozumiałeś, od samego proste zadania.

Schemat rozwiązywania prostych równań liniowych

Najpierw napiszę jeszcze raz cały schemat rozwiązywania najprostszych równań liniowych:

  1. Rozwiń nawiasy, jeśli występują.
  2. Izolujemy zmienne, tj. Przenosimy wszystko, co zawiera „X” na jedną stronę, a wszystko bez „X” na drugą.
  3. Przedstawiamy podobne terminy.
  4. Wszystko dzielimy przez współczynnik „x”.

Oczywiście ten schemat nie zawsze działa; są w nim pewne subtelności i sztuczki, a teraz je poznamy.

Rozwiązywanie rzeczywistych przykładów prostych równań liniowych

Zadanie nr 1

Pierwszy krok wymaga od nas otwarcia nawiasów. Ale nie ma ich w tym przykładzie, więc pomijamy ten krok. W drugim kroku musimy wyizolować zmienne. Uwaga: mówimy tylko o warunkach indywidualnych. Zapiszmy to:

Podobne terminy prezentujemy po lewej i prawej stronie, ale tutaj zostało to już zrobione. Dlatego przechodzimy do czwartego kroku: podziel przez współczynnik:

\[\frac(6x)(6)=-\frac(72)(6)\]

Więc otrzymaliśmy odpowiedź.

Zadanie nr 2

W tym zadaniu widzimy nawiasy, więc rozwińmy je:

Zarówno po lewej, jak i po prawej stronie widzimy mniej więcej ten sam projekt, ale postępujmy zgodnie z algorytmem, tj. oddzielanie zmiennych:

Oto kilka podobnych:

U jakich korzeni to działa? Odpowiedź: dla każdego. Zatem możemy napisać, że $x$ jest dowolną liczbą.

Zadanie nr 3

Trzecie równanie liniowe jest bardziej interesujące:

\[\lewo(6-x \prawo)+\lewo(12+x \prawo)-\lewo(3-2x \prawo)=15\]

Jest tu kilka nawiasów, ale nie są one przez nic mnożone, są po prostu poprzedzone różnymi znakami. Podzielmy je:

Wykonujemy drugi znany nam już krok:

\[-x+x+2x=15-6-12+3\]

Zróbmy matematykę:

Wykonujemy ostatni krok - dzielimy wszystko przez współczynnik „x”:

\[\frac(2x)(x)=\frac(0)(2)\]

O czym należy pamiętać przy rozwiązywaniu równań liniowych

Jeśli pominiemy zbyt proste zadania, chciałbym powiedzieć, co następuje:

  • Jak powiedziałem powyżej, nie każde równanie liniowe ma rozwiązanie - czasami po prostu nie ma pierwiastków;
  • Nawet jeśli są korzenie, może być wśród nich zero - nie ma w tym nic złego.

Zero to taka sama liczba jak pozostałe; nie powinieneś go w żaden sposób dyskryminować ani zakładać, że jeśli otrzymasz zero, oznacza to, że zrobiłeś coś złego.

Kolejna funkcja związana jest z otwieraniem nawiasów. Uwaga: jeśli przed nimi znajduje się „minus”, usuwamy go, ale w nawiasach zmieniamy znaki na naprzeciwko. A potem możemy go otworzyć za pomocą standardowych algorytmów: otrzymamy to, co widzieliśmy w powyższych obliczeniach.

Zrozumienie tego prostego faktu pomoże ci uniknąć popełniania głupich i bolesnych błędów w szkole średniej, gdy robienie takich rzeczy jest oczywiste.

Rozwiązywanie złożonych równań liniowych

Przejdźmy do bardziej złożonych równań. Teraz konstrukcje staną się bardziej złożone i przy wykonywaniu różnych przekształceń pojawi się funkcja kwadratowa. Nie powinniśmy się jednak tego bać, gdyż jeśli zgodnie z planem autora rozwiązujemy równanie liniowe, to w procesie transformacji wszystkie jednomiany zawierające funkcję kwadratową koniecznie się zniosą.

Przykład nr 1

Oczywiście pierwszym krokiem jest otwarcie nawiasów. Zróbmy to bardzo ostrożnie:

Przyjrzyjmy się teraz prywatności:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Oto kilka podobnych:

Oczywiście to równanie nie ma rozwiązań, więc napiszemy to w odpowiedzi:

\[\varnic\]

albo nie ma korzeni.

Przykład nr 2

Wykonujemy te same czynności. Pierwszy krok:

Przesuńmy wszystko ze zmienną w lewo, a bez niej - w prawo:

Oto kilka podobnych:

Oczywiście to równanie liniowe nie ma rozwiązania, więc zapiszemy je w ten sposób:

\[\varnic\],

albo nie ma korzeni.

Niuanse rozwiązania

Obydwa równania są całkowicie rozwiązane. Na przykładzie tych dwóch wyrażeń po raz kolejny przekonaliśmy się, że nawet w najprostszych równaniach liniowych wszystko może nie być takie proste: pierwiastków może być albo jeden, albo żaden, albo nieskończenie wiele pierwiastków. W naszym przypadku rozważaliśmy dwa równania, oba po prostu nie mają pierwiastków.

Chciałbym jednak zwrócić uwagę na inny fakt: jak pracować z nawiasami i jak je otwierać, jeśli przed nimi znajduje się znak minus. Rozważ to wyrażenie:

Przed otwarciem musisz pomnożyć wszystko przez „X”. Uwaga: mnoży się każdy indywidualny termin. Wewnątrz znajdują się dwa terminy - odpowiednio dwa terminy i pomnożone.

I dopiero po dokonaniu tych pozornie elementarnych, ale bardzo ważnych i niebezpiecznych przekształceń, można otworzyć nawias z punktu widzenia tego, że po nim znajduje się znak minus. Tak, tak: dopiero teraz, gdy przekształcenia zostaną zakończone, pamiętamy, że przed nawiasem jest znak minus, co oznacza, że ​​wszystko poniżej po prostu zmienia znaki. Jednocześnie znikają same nawiasy i, co najważniejsze, znika również przedni „minus”.

To samo robimy z drugim równaniem:

To nie przypadek, że zwracam uwagę na te drobne, pozornie nieistotne fakty. Bo rozwiązywanie równań to zawsze ciąg elementarnych przekształceń, gdzie nieumiejętność jasnego i kompetentnego wykonania prostych czynności powoduje, że licealiści przychodzą do mnie i na nowo uczą się rozwiązywać takie proste równania.

Oczywiście nadejdzie dzień, w którym udoskonalisz te umiejętności do poziomu automatyzmu. Nie będziesz już musiał za każdym razem wykonywać tylu przekształceń; zapiszesz wszystko w jednej linii. Ale kiedy dopiero się uczysz, musisz napisać każdą akcję osobno.

Rozwiązywanie jeszcze bardziej złożonych równań liniowych

To, co teraz rozwiążemy, trudno nazwać najprostszym zadaniem, ale znaczenie pozostaje takie samo.

Zadanie nr 1

\[\lewo(7x+1 \prawo)\lewo(3x-1 \prawo)-21((x)^(2))=3\]

Pomnóżmy wszystkie elementy w pierwszej części:

Zadbajmy o prywatność:

Oto kilka podobnych:

Dokończmy ostatni krok:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Oto nasza ostateczna odpowiedź. I mimo że w rozwiązywaniu mieliśmy współczynniki z funkcją kwadratową, to znosiły się one nawzajem, przez co równanie było liniowe, a nie kwadratowe.

Zadanie nr 2

\[\lewo(1-4x \prawo)\lewo(1-3x \prawo)=6x\lewo(2x-1 \prawo)\]

Wykonajmy ostrożnie pierwszy krok: pomnóż każdy element z pierwszego nawiasu przez każdy element z drugiego. Po przekształceniach należy otrzymać w sumie cztery nowe wyrazy:

Teraz ostrożnie wykonajmy mnożenie w każdym wyrazie:

Przesuńmy terminy z „X” w lewo, a te bez – w prawo:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Oto podobne terminy:

Po raz kolejny otrzymaliśmy ostateczną odpowiedź.

Niuanse rozwiązania

Najważniejsza uwaga dotycząca tych dwóch równań jest następująca: gdy tylko zaczniemy mnożyć nawiasy zawierające więcej niż jeden wyraz, robimy to według następującej zasady: pierwszy wyraz bierzemy z pierwszego i mnożymy przez każdy element z drugi; następnie bierzemy drugi element z pierwszego i podobnie mnożymy przez każdy element drugiego. W rezultacie będziemy mieli cztery kadencje.

O sumie algebraicznej

W tym ostatnim przykładzie chciałbym przypomnieć uczniom, czym jest suma algebraiczna. W matematyce klasycznej przez 1-7 dolarów rozumiemy prostą konstrukcję: odejmij siedem od jednego. W algebrze rozumiemy przez to: do liczby „jeden” dodajemy kolejną liczbę, a mianowicie „minus siedem”. Tym właśnie różni się suma algebraiczna od zwykłej sumy arytmetycznej.

Gdy tylko podczas wykonywania wszystkich przekształceń, każdego dodawania i mnożenia zaczniesz widzieć konstrukcje podobne do opisanych powyżej, po prostu nie będziesz mieć żadnych problemów z algebrą podczas pracy z wielomianami i równaniami.

Na koniec spójrzmy na jeszcze kilka przykładów, które będą jeszcze bardziej złożone niż te, które właśnie sprawdziliśmy, i aby je rozwiązać, będziemy musieli nieco rozszerzyć nasz standardowy algorytm.

Rozwiązywanie równań z ułamkami

Aby rozwiązać takie zadania, będziemy musieli dodać do naszego algorytmu jeszcze jeden krok. Ale najpierw przypomnę Ci nasz algorytm:

  1. Otwórz nawiasy.
  2. Oddzielne zmienne.
  3. Przynieś podobne.
  4. Podziel przez stosunek.

Niestety, ten wspaniały algorytm, przy całej swojej skuteczności, okazuje się nie do końca odpowiedni, gdy mamy przed sobą ułamki. Jak zobaczymy poniżej, w obu równaniach mamy ułamek zarówno po lewej, jak i po prawej stronie.

Jak pracować w tym przypadku? Tak, to bardzo proste! Aby to zrobić, należy dodać do algorytmu jeszcze jeden krok, który można wykonać zarówno przed, jak i po pierwszej akcji, a mianowicie pozbycie się ułamków. Zatem algorytm będzie następujący:

  1. Pozbądź się ułamków.
  2. Otwórz nawiasy.
  3. Oddzielne zmienne.
  4. Przynieś podobne.
  5. Podziel przez stosunek.

Co to znaczy „pozbyć się ułamków”? Dlaczego można to zrobić zarówno po, jak i przed pierwszym standardowym krokiem? W rzeczywistości w naszym przypadku wszystkie ułamki są liczbowe w swoim mianowniku, tj. Wszędzie mianownik jest po prostu liczbą. Dlatego jeśli pomnożymy obie strony równania przez tę liczbę, pozbędziemy się ułamków.

Przykład nr 1

\[\frac(\lewo(2x+1 \prawo)\lewo(2x-3 \prawo))(4)=((x)^(2))-1\]

Pozbądźmy się ułamków w tym równaniu:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Uwaga: wszystko jest mnożone raz przez „cztery”, tj. to, że masz dwa nawiasy, nie oznacza, że ​​musisz pomnożyć każdy z nich przez „cztery”. Zapiszmy:

\[\lewo(2x+1 \prawo)\lewo(2x-3 \prawo)=\lewo(((x)^(2))-1 \prawo)\cdot 4\]

Teraz rozwińmy:

Wykluczamy zmienną:

Dokonujemy redukcji wyrazów podobnych:

\[-4x=-1\lewo| :\lewo(-4 \prawo) \prawo.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Mamy ostateczna decyzja, przejdźmy do drugiego równania.

Przykład nr 2

\[\frac(\lewo(1-x \prawo)\lewo(1+5x \prawo))(5)+((x)^(2))=1\]

Tutaj wykonujemy te same czynności:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Problem jest rozwiązany.

Właściwie to wszystko, co chciałem wam dzisiaj powiedzieć.

Kluczowe punkty

Kluczowe ustalenia to:

  • Znać algorytm rozwiązywania równań liniowych.
  • Możliwość otwierania nawiasów.
  • Nie martw się, jeśli zobaczysz funkcje kwadratowe najprawdopodobniej w procesie dalszych przekształceń ulegną zmniejszeniu.
  • Istnieją trzy rodzaje pierwiastków w równaniach liniowych, nawet najprostszych: jeden pojedynczy pierwiastek, cała oś liczbowa jest pierwiastkiem i nie ma żadnych pierwiastków.

Mam nadzieję, że ta lekcja pomoże ci opanować prosty, ale bardzo ważny temat dla dalszego zrozumienia całej matematyki. Jeśli coś nie jest jasne, wejdź na stronę i rozwiąż przedstawione tam przykłady. Bądź na bieżąco, czeka Cię jeszcze wiele ciekawych rzeczy!

Ta część równania to wyrażenie w nawiasach. Aby otworzyć nawiasy, spójrz na znak przed nawiasami. Jeśli występuje znak plus, otwarcie nawiasów w wyrażeniu niczego nie zmieni: wystarczy usunąć nawiasy. Jeśli podczas otwierania nawiasów znajduje się znak minus, należy zmienić wszystkie znaki, które pierwotnie znajdowały się w nawiasach, na przeciwne. Na przykład -(2x-3)=-2x+3.

Mnożenie dwóch nawiasów.
Jeśli równanie zawiera iloczyn dwóch nawiasów, otwarcie nawiasów zgodnie z standardowa zasada. Każdy wyraz w pierwszym nawiasie jest mnożony przez każdy wyraz w drugim nawiasie. Otrzymane liczby są sumowane. W tym przypadku iloczyn dwóch „plusów” lub dwóch „minusów” daje terminowi znak „plus”, a jeśli czynniki mają różne znaki, następnie otrzymuje znak minus.
Rozważmy.
(5x+1)(3x-4)=5x*3x-5x*4+1*3x-1*4=15x^2-20x+3x-4=15x^2-17x-4.

Otwierając nawiasy, czasami podnosząc wyrażenie do . Wzory na kwadraty i sześciany należy znać na pamięć i pamiętać.
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
(a+b)^3=a^3+3a^2*b+3ab^2+b^3
(a-b)^3=a^3-3a^2*b+3ab^2-b^3
Wzory do konstruowania wyrażenia większego niż trzy można wykonać za pomocą trójkąta Pascala.

Źródła:

  • wzór na rozwinięcie nawiasu

Ujęte w nawiasy operacje matematyczne może zawierać zmienne i wyrażenia aby zróżnicować stopnie trudności. Aby pomnożyć takie wyrażenia, będziesz musiał poszukać rozwiązania w ogólna perspektywa, otwierając nawiasy i upraszczając wynik. Jeśli nawiasy zawierają operacje bez zmiennych, tylko z wartościami liczbowymi, to otwieranie nawiasów nie jest konieczne, ponieważ jeśli mamy komputer, jego użytkownik ma dostęp do bardzo znaczących zasobów obliczeniowych - łatwiej jest z nich skorzystać niż uprościć wyrażenie.

Instrukcje

Jeśli chcesz otrzymać wynik w postaci ogólnej, pomnóż kolejno każdy (lub koniec z ) zawarty w jednym nawiasie przez zawartość wszystkich pozostałych nawiasów. Na przykład niech oryginalne wyrażenie zostanie zapisane w następujący sposób: (5+x)∗(6-x)∗(x+2). Następnie mnożenie sekwencyjne (czyli otwieranie nawiasów) da następujący wynik: (5+x)∗(6-x)∗(x+2) = (5∗6-5∗x)∗(5∗x+ 5∗2) + (6∗x-x∗x)∗(x∗x+2∗x) = (5∗6∗5∗x+5∗6∗5∗2) - (5∗x∗5∗x+ 5∗ x∗5∗2) + (6∗x∗x∗x+6∗x∗2∗x) - (x∗x∗x∗x+x∗x∗2∗x) = 5∗6∗5 ∗x + 5∗6∗5∗2 - 5∗x∗5∗x - 5∗x∗5∗2 + 6∗x∗x∗x + 6∗x∗2∗x - x∗x∗x∗x - x ∗x∗2∗x = 150∗x + 300 - 25∗x² - 50∗x + 6∗x³ + 12∗x² - x∗x3 - 2∗x3.

Uprość wynik, skracając wyrażenia. Przykładowo wyrażenie uzyskane w poprzednim kroku można uprościć w następujący sposób: 150∗x + 300 - 25∗x² - 50∗x + 6∗x3 + 12∗x² - x∗x3 - 2∗x3 = 100∗x + 300 - 13∗ x² - 8∗x3 - x∗x3.

Użyj kalkulatora, jeśli chcesz pomnożyć x równe 4,75, czyli (5+4,75)∗(6-4,75)∗(4,75+2). Aby obliczyć tę wartość należy wejść na stronę wyszukiwarki Google lub Nigma i w polu zapytania wpisać wyrażenie w oryginalnej postaci (5+4,75)*(6-4,75)*(4,75+2). Google natychmiast wyświetli 82.265625, bez klikania przycisku, ale Nigma musi wysłać dane na serwer jednym kliknięciem.

Główną funkcją nawiasów jest zmiana kolejności działań przy obliczaniu wartości. Na przykład, w wyrażeniu liczbowym \(5·3+7\) najpierw zostanie obliczone mnożenie, a następnie dodanie: \(5·3+7 =15+7=22\). Natomiast w wyrażeniu \(5·(3+7)\) najpierw zostanie obliczone dodawanie w nawiasie, a dopiero potem mnożenie: \(5·(3+7)=5·10=50\).


Przykład. Rozwiń nawias: \(-(4m+3)\).
Rozwiązanie : \(-(4m+3)=-4m-3\).

Przykład. Otwórz nawias i podaj podobne wyrazy \(5-(3x+2)+(2+3x)\).
Rozwiązanie : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).


Przykład. Rozwiń nawiasy \(5(3-x)\).
Rozwiązanie : W nawiasie mamy \(3\) i \(-x\), a przed nawiasem jest piątka. Oznacza to, że każdy element nawiasu jest mnożony przez \(5\) - przypominam Znak mnożenia między liczbą a nawiasem nie jest zapisywany w matematyce w celu zmniejszenia rozmiaru wpisów.


Przykład. Rozwiń nawiasy \(-2(-3x+5)\).
Rozwiązanie : Podobnie jak w poprzednim przykładzie, \(-3x\) i \(5\) w nawiasach są mnożone przez \(-2\).

Przykład. Uprość wyrażenie: \(5(x+y)-2(x-y)\).
Rozwiązanie : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).


Pozostaje rozważyć ostatnią sytuację.

Podczas mnożenia nawiasu przez nawias każdy wyraz pierwszego nawiasu jest mnożony przez każdy wyraz drugiego nawiasu:

\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

Przykład. Rozwiń nawiasy \((2-x)(3x-1)\).
Rozwiązanie : Mamy produkt w postaci nawiasów, który można od razu rozszerzyć, korzystając z powyższego wzoru. Ale żeby się nie pomylić, zróbmy wszystko krok po kroku.
Krok 1. Usuń pierwszy nawias - pomnóż każdy człon przez drugi nawias:

Krok 2. Rozwiń iloczyny nawiasów i współczynnika jak opisano powyżej:
- Po pierwsze...

Potem drugi.

Krok 3. Teraz mnożymy i przedstawiamy podobne terminy:

Nie ma potrzeby tak szczegółowo opisywać wszystkich przekształceń, można je od razu pomnożyć. Ale jeśli dopiero uczysz się otwierać nawiasy, pisz szczegółowo, będzie mniejsze ryzyko popełnienia błędów.

Uwaga do całej sekcji. Tak naprawdę nie musisz pamiętać wszystkich czterech zasad, wystarczy zapamiętać jedną, tę: \(c(a-b)=ca-cb\) . Dlaczego? Ponieważ jeśli zastąpisz jeden zamiast c, otrzymasz regułę \((a-b)=a-b\) . A jeśli podstawimy minus jeden, otrzymamy regułę \(-(a-b)=-a+b\) . Cóż, jeśli zastąpisz inny nawias zamiast c, możesz uzyskać ostatnią regułę.

Nawias w nawiasie

Czasami w praktyce występują problemy z nawiasami zagnieżdżonymi w innych nawiasach. Oto przykład takiego zadania: uprość wyrażenie \(7x+2(5-(3x+y))\).

Aby pomyślnie rozwiązać takie zadania, potrzebujesz:
- dokładnie zrozumieć zagnieżdżenie nawiasów - który z nich jest w którym;
- otwieraj nawiasy sekwencyjnie, zaczynając np. od tego najbardziej wewnętrznego.

Jest to ważne przy otwieraniu jednego z nawiasów nie dotykaj reszty wyrażenia, po prostu przepisz to tak, jak jest.
Spójrzmy na zadanie napisane powyżej jako przykład.

Przykład. Otwórz nawiasy i podaj podobne wyrazy \(7x+2(5-(3x+y))\).
Rozwiązanie:


Przykład. Otwórz nawiasy i podaj podobne wyrażenia \(-(x+3(2x-1+(x-5)))\).
Rozwiązanie :

\(-(x+3(2x-1\)\(+(x-5)\) \())\)

Występuje tutaj potrójne zagnieżdżenie nawiasów. Zacznijmy od tego najbardziej wewnętrznego (zaznaczonego na zielono). Przed wspornikiem jest plus, więc po prostu odpada.

\(-(x+3(2x-1\)\(+x-5\) \())\)

Teraz musisz otworzyć drugi wspornik, środkowy. Ale wcześniej uprościmy wyrażenie terminów widmo w drugim nawiasie.

\(=-(x\)\(+3(3x-6)\) \()=\)

Teraz otwieramy drugi nawias (zaznaczony na niebiesko). Przed nawiasem jest czynnikiem - więc każdy wyraz w nawiasie jest przez niego mnożony.

\(=-(x\)\(+9x-18\) \()=\)

I otwórz ostatni wspornik. Przed nawiasem znajduje się znak minus, więc wszystkie znaki są odwrócone.

Rozwijanie nawiasów jest podstawową umiejętnością matematyczną. Bez tej umiejętności niemożliwe jest uzyskanie oceny powyżej C w klasach 8 i 9. Dlatego zalecam dobre zrozumienie tego tematu.

W tym artykule szczegółowo przyjrzymy się podstawowym zasadom tak ważnego tematu na kursie matematyki, jak nawiasy otwierające. Aby poprawnie rozwiązywać równania, w których się je stosuje, trzeba znać zasady otwierania nawiasów.

Jak poprawnie otwierać nawiasy podczas dodawania

Rozwiń nawiasy poprzedzone znakiem „+”.

Jest to najprostszy przypadek, gdyż jeśli przed nawiasem znajduje się znak dodania, to znajdujące się w nim znaki nie zmieniają się po otwarciu nawiasu. Przykład:

(9 + 3) + (1 - 6 + 9) = 9 + 3 + 1 - 6 + 9 = 16.

Jak rozwinąć nawiasy poprzedzone znakiem „-”.

W w tym przypadku musisz przepisać wszystkie terminy bez nawiasów, ale jednocześnie zmienić wszystkie znajdujące się w nich znaki na przeciwne. Znaki zmieniają się tylko dla terminów z nawiasów poprzedzonych znakiem „-”. Przykład:

(9 + 3) - (1 - 6 + 9) = 9 + 3 - 1 + 6 - 9 = 8.

Jak otwierać nawiasy podczas mnożenia

Przed nawiasami znajduje się liczba mnożnika

W takim przypadku należy pomnożyć każdy wyraz przez współczynnik i otworzyć nawiasy bez zmiany znaków. Jeśli mnożnik ma znak „-”, to podczas mnożenia znaki wyrazów zostają odwrócone. Przykład:

3 * (1 - 6 + 9) = 3 * 1 - 3 * 6 + 3 * 9 = 3 - 18 + 27 = 12.

Jak otworzyć dwa nawiasy ze znakiem mnożenia między nimi

W takim przypadku należy pomnożyć każdy wyraz z pierwszego nawiasu przez każdy wyraz z drugiego nawiasu, a następnie dodać wyniki. Przykład:

(9 + 3) * (1 - 6 + 9) = 9 * 1 + 9 * (- 6) + 9 * 9 + 3 * 1 + 3 * (- 6) + 3 * 9 = 9 - 54 + 81 + 3 - 18 + 27 = 48.

Jak otwierać nawiasy w kwadracie

Jeżeli suma lub różnica dwóch wyrazów jest podniesiona do kwadratu, nawiasy należy otworzyć według następującego wzoru:

(x + y)^2 = x^2 + 2 * x * y + y^2.

W przypadku minusa w nawiasie wzór nie ulega zmianie. Przykład:

(9 + 3) ^ 2 = 9 ^ 2 + 2 * 9 * 3 + 3 ^ 2 = 144.

Jak rozwinąć nawiasy do innego stopnia

Jeśli sumę lub różnicę wyrazów podniesiemy na przykład do potęgi trzeciej lub czwartej, wystarczy rozbić potęgę nawiasu na „kwadraty”. Dodaje się potęgi identycznych czynników, a przy dzieleniu odejmuje się moc dzielnika od potęgi dzielnej. Przykład:

(9 + 3) ^ 3 = ((9 + 3) ^ 2) * (9 + 3) = (9 ^ 2 + 2 * 9 * 3 + 3 ^ 2) * 12 = 1728.

Jak otworzyć 3 nawiasy

Istnieją równania, w których mnożone są jednocześnie 3 nawiasy. W takim przypadku należy najpierw pomnożyć wyrazy pierwszych dwóch nawiasów przez siebie, a następnie pomnożyć sumę tego mnożenia przez wyrazy trzeciego nawiasu. Przykład:

(1 + 2) * (3 + 4) * (5 - 6) = (3 + 4 + 6 + 8) * (5 - 6) = - 21.

Te zasady otwierania nawiasów mają zastosowanie zarówno do rozwiązywania równań liniowych, jak i trygonometrycznych.



Nowość na stronie

>

Najbardziej popularny